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Periodically twisted quantum waveguides

Let ω ⊂∈ R2 be a bounded domain with a C2 boundary and let β ∈ R.
Define L0 : R× ω → R3 by

L0(s, t) = (s, t2 cos(βs)e2 − t3 sin(βs)e3, t2 sin(βs)e2 + t3 cos(βs)e3)

We construct the periodically twisted tube as Ω0 := L0(R× ω).

We assume that ω is not rotationally symmetric.
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The Dirichlet Laplacian in Ω0

We consider the Dirichlet Laplacian in Ω0. Since L0 is a
diffeomorphism, one can see that it is actually unitary equivalent with
the operator acting on L2(R× ω) given by:

−H0 = ∆ω + (∂s − β∂ϕ)2

where ∂ϕ = t2∂3 − t3∂2.

Using the partial Fourier transform with
respect to the first (longitudinal) variable, denoted by F , we can see
that H0 is unitary equivalent to an analytically fibered operator:

FH0F−1 =
∫ ⊕
R

h0(p)dp,

where for any p ∈ R

h0(p) = −∆ω − (ip− β∂ϕ)2

is an operator acting in L2(ω).
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Spectral properties of H0

The family {h0(p)} is analytic of type A in the sense of Kato. Since
each operator h0(p) has purely discrete spectrum we have a band
structure. Furthermore the first eigenvalue E1(p) is analytic and
simple. We can see that the spectrum of H0 is purely absolutely
continuous and given by

σ(H0) =
∞⋃
n=1

En(R) = [E1,∞),

Furthermore, it is know that there exist an effective mass mβ such that.

E1(p) = E1 +mβp
2(1 +O(p))

with 0 < mβ ≤ 1, the equality holding if β = 0.
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The perturbed tube Ω

Let us consider now a perturbation of Ω0 by considering a smooth
curve γ in R3 that is asymptotically straight. In particular we will ask
that its curvature κ and torsion τ are smooth functions decaying at
infinity.

We assume that γ has a distinct frame (Frenet Frame)
satisfying

e1(s) = γ̇(s), κ(s)e2(s) = ė1(s), e3(s) = e1(s)× e2(s).

We consider a twisting by an angle θ(s) with respect to this frame
defined a twisted frame {eθ1, eθ2, eθ3}. We assume that it is
asymptotically periodic in the sense that it satisfies θ̇(s) = ε(s) + β
with ε decaying at infinity. Then we can define

L(s, t2, t3) = γ(s) + t2eθ2(s) + t3eθ3(s)

and set accordingly Ω := L(R× ω).
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The Dirichlet Laplacian in Ω

If we assume that L is injective and ||κ||L∞ supt∈ω |t| < 1, L is a
diffeomorphism between the straight tube R× ω and Ω.

Implementing
this equivalence, we can see that the Dirichlet Laplacian in Ω is
equivalent with the operator in L2(R× ω) defined by

−H = ∆ω + κ2

4h2 +
(
h−1/2(∂s + (τ − θ̇)∂ϕ)h−1/2

)2

where
h(s, t) = 1− κ(s)(t2 cos(θ(s) + t3 sin(θ(s))))

is the square root of the determinant of the metric tensor induced by L.
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The coupling constant δ

We want to make our deformed tube depending on a coupling constant.
For δ ∈ [0, 1] consider

θ̇δ = β + δε, κδ = δκ and τδ = δτ.

We define in L2(R× ω) the operator given by particularizing the
expression for H to θδ, κδ and τδ

Hδ = −∆ω −
δ2κ2

4h2
δ

−
(
h
−1/2
δ (∂s + (δ(τ − ε)− β) ∂ϕ)h−1/2

δ

)2
,

where hδ(s, t) = 1− δκ(s)
(
t2 cos θδ(s) + t3 sin θδ(s)

)
.
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Assumptions (1)

We assume that ε, κ, τ : R→ R are functions of class C2 with
exponential decay i.e., for some α > 2(E2 − E1)

1
2 > 0 they satisfy

κ(s), τ(s), ε(s) = O(e−α〈s〉),

where 〈s〉 := (1 + s2)1/2, and the same assumption for their first and
second derivatives. Setting

W (δ) = Hδ −H0

we can see that that W (δ) is a second order differential operator with
decaying coefficients for every δ. Under this assumptions one can show
that H−1

δ −H
−1
0 is compact, and hence conclude that

σess(Hδ) = [E1,∞).
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Assumptions (2)

Let η be an exponential weight of the form

η(s) = e−N〈s〉 with (E2 − E1)
1
2 < N <

α

2 .

The function

k 7→
(
(Hδ − E1 − k2)−1 : ηL2(R× ω)→ η−1D(H) ⊂ η−1L2(R× ω)

)
,

initially defined for k in C++ := {k ∈ C; Im k > 0; Re k > 0}, is clearly
analytic
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Theorem (β 6= 0)
Let ε, κ, τ : R→ R be non-zero C2-functions as above and fix a
sufficiently small neighborhood of zero D in C. Then, there exists
δ0 > 0 such that for δ ≤ δ0, the analytic operator-valued function

k 7→
(
(Hδ − E1 − k2)−1 : ηL2(R× ω) 7→ η−1L2(R× ω)

)
admits a meromorphic extension on D. This function has a unique pole
k(δ) in D, which has multiplicity one. Moreover, we have

k(δ) = iµ1δ +O(δ2),

where

µ1 = β
√
mβ

∫
R×ω

(τ − ε)|∂ϕψ1|2 −
β2
√
mβ

∫
R×ω

κ (|∂ϕψ1|2 + 1
4 |ψ1|2)ϑ,

with ϑ(s, t) := (t2 cos(βs) + t3 sin(βs)). Furthermore, the pole k(δ) is a
purely imaginary number.
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Comments

In terms of the resolvent (Hδ − z)−1 we can say that it admits a
meromorphic extension in a neighborhood of E1 in the 2-sheeted
Riemann surface of

√
z − E1.

If µ1 > 0, the pole k(δ) lies in the positive imaginary axis and
correspond to a real resonance under the essential spectrum (in
particular it gives raise to an eigenvalue).
If µ1 < 0, the pole k(δ) lies in the negative imaginary axis and
correspond to a resonance that lies in the second sheet of the
2-sheeted Riemann surface. In particular this kind of resonances
are far from the real axis and are sometimes refer as anti-bound
states.
If µ1 = 0 we need to go the next order in order to understand the
nature of the resonance.
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Theorem (β = 0)
Let us set β = 0. Let ε, κ, τ : R→ R be non-zero C2-functions
satisfying the above stated decay. Fix a sufficiently small neighborhood
of zero D in C. Then, there exists δ0 > 0 such that for δ ≤ δ0, the
analytic operator-valued function

k 7→
(
(Hδ − E1 − k2)−1 : ηL2(R× ω)→ η−1L2(R× ω)

)
admits a meromorphic extension on D. This function has a unique pole
k(δ) in D, which has multiplicity one. Moreover

k(δ) = iµ2δ
2 +O(δ3),

where
µ2 =1

8
∑
q>1

(Eq − E1)2〈ψq|t2ψ1〉2〈κ|(D2
s + Eq − E1)−1κ〉

−1
2
∑
q>1

(Eq − E1)〈ψq|∂ϕψ1〉2〈(τ − ε)|(D2
s + Eq − E1)−1(τ − ε)〉

−1
2
∑
q>1

(Eq − E1)〈πqt2ψ1|∂ϕψn〉〈τ − ε|(D2
s + Eq − E1)−1κ̇〉.
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Scketch of proof (1)

Localizing in energy and using the properties of the first band E1
one can first show that

ηR0(k)η := η(H0 − E1 − k2)−1η = A−1
k

+ F (k)

where F (k) is analytic in a some small neighborhood D and A−1 is
a rank one operator.

Since in C++ we have

η(Hδ − E1 − k2)−1η = ηR0(k)η
(
Id + η−1Wδη

−1ηR0(k)η
)−1

we need to study η−1Wδη
−1ηR0(k)η.
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Scketch of proof (2)

Lemma
There exists a neighborhood D of zero and δ0 > 0 such that for any
0 < δ ≤ δ0 and k ∈ D \ {0}

η−1Wδη
−1ηR0(k)η = 1

k
K0(δ) + T (δ, k),

where K0(δ) is the rank one operator

K0(δ) = i

2√mβ
|η−1Wδψ1〉〈η ⊗ ψ1|,

and D 3 k 7→ (T (δ, k): L2(R× ω)→ L2(R× ω)) is an analytic
operator-valued function. Moreover,

sup
k∈D
||T (δ, k)|| = O(δ).
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Scketch of proof (3)

To end the proof one can see that(
Id + η−1WδR0(k)η

)
=
(
Id + T (δ, k)

)(
Id + 1

k
(Id + T (δ, k))−1K0(δ)

)
implies that by setting

νδ(k) := 〈ηψ1|
1
k

(Id + T (δ, k))−1 i

2√mβ
η−1Wδψ1〉

there exist projections Π⊥δ and Πδ we have

ηR(k)η = 1
k + νδ(k)

(
A−1+kF (k)

)
Πδ(Id+T (δ, k))−1+F (k)Π⊥δ (Id+T (δ, k))−1.
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