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Quantised calculus

Quantised calculus is an invention of A. Connes from circa 1985.
Quantised calculus is the following things:

(a) An analogy of classical calculus developed for noncommutative settings
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Quantised calculus

Quantised calculus is an invention of A. Connes from circa 1985.
Quantised calculus is the following things:

(a) An analogy of classical calculus developed for noncommutative settings
(b) A rigorous treatment of “infinitesimal” quantities

(c) A form of calculus which is well-suited to certain “non-smooth”
settings.
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Notation

Fix the following notation:

@ H is a complex, separable Hilbert space.
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Fix the following notation:
@ H is a complex, separable Hilbert space.

@ B(7H) denote the algebra of all bounded linear operators on H, and
|| - || denotes the operator norm.
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Fix the following notation:
@ H is a complex, separable Hilbert space.

@ B(7H) denote the algebra of all bounded linear operators on H, and
|| - || denotes the operator norm.

e K(#H) is the algebra of compact operators (the norm closure of finite
rank operators in B(H).
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Fix the following notation:
@ H is a complex, separable Hilbert space.
@ B(7H) denote the algebra of all bounded linear operators on H, and
|| - || denotes the operator norm.
e K(#H) is the algebra of compact operators (the norm closure of finite
rank operators in B(H).

@ The singular value sequence of a compact operator T is denoted
{1n(T)} 0. By definition, uo(T) > pua(T) > p2(T) > -
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Fix the following notation:

@ H is a complex, separable Hilbert space.

@ B(7H) denote the algebra of all bounded linear operators on H, and
|| - || denotes the operator norm.

e K(#H) is the algebra of compact operators (the norm closure of finite
rank operators in B(H).

@ The singular value sequence of a compact operator T is denoted
{1n(T)}n>0. By definition, 1uo(T) > pua(T) > po(T) > -

@ The space ¢, for p € (0,00) is the space of p-summable sequences.
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Infinitesimals

In historical mathematics, a heuristic infinitesimal is supposed to have the

following property:
e Historical infinitesimal A number ¢ is a positive infinitesimal if for all

n>1wehave 0 <e < % Obviously there are no positive infinitesimals in
R.
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Infinitesimals

In historical mathematics, a heuristic infinitesimal is supposed to have the
following property:

e Historical infinitesimal A number ¢ is a positive infinitesimal if for all
n>1wehave 0<e< % Obviously there are no positive infinitesimals in
R.

¢ Infinitesimal operator:

A. Connes has proposed an operator-theoretic rigorous notion of
infinitesimals:

We shall say that an operator T € B(#) is infinitesimal if for any n > 1
there exists a finite dimensional subspace E such that || T‘EL” <L
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Infinitesimals

In historical mathematics, a heuristic infinitesimal is supposed to have the
following property:

e Historical infinitesimal A number ¢ is a positive infinitesimal if for all
n>1wehave 0<e< % Obviously there are no positive infinitesimals in
R.

¢ Infinitesimal operator:

A. Connes has proposed an operator-theoretic rigorous notion of
infinitesimals:

We shall say that an operator T € B(#) is infinitesimal if for any n > 1
there exists a finite dimensional subspace E such that || T‘EL” < % This
is equivalent to saying that T is compact.
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Sizes of infinitesimals

The size of an infinitesimal T is described as the rate of decay of its
singular value sequence {1k (T)}72,-

wk(T) is of finite support <« T if of finite rank
p(T)yetl, < TeLl,
i(T) = O(k™») & T€Lpo
(k" am(T)} €bg & TE€Lpg

Sometimes T € L, « is stated as “T is an infinitesimal of order %
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Quantized differential

A. Connes's definition of a quantised differential is stated in terms of a
Fredholm module.
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Quantized differential

A. Connes's definition of a quantised differential is stated in terms of a
Fredholm module.

e Definition: Let A be an involutive algebra over C. Then a Fredholm
module over A is given by

© a x-algebra representation 7 of A on a Hilbert space H,

@ an operator F = F* , F2 =1, on ‘H such that [F, 7(a)] is a compact
operator on H for any a € A.
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Quantized differential

A. Connes's definition of a quantised differential is stated in terms of a
Fredholm module.

e Definition: Let A be an involutive algebra over C. Then a Fredholm
module over A is given by

© a x-algebra representation 7 of A on a Hilbert space H,
@ an operator F = F* , F2 =1, on ‘H such that [F, 7(a)] is a compact
operator on H for any a € A.

(this definition has its origins with M. Atiyah's definition of an “abstract
elliptic operator” and has been heavily studied in noncommutative
geometry)

e Quantized calculus of differential forms: a quantised differential df of
f € A is defined as:

daf .= i[F,n(f)] = i(Fr(f) — n(f)F) € K(H);
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Dixmier traces and quantised integration

Connes also proposed a quantised integral, given by a Dixmier trace.
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Dixmier traces and quantised integration

Connes also proposed a quantised integral, given by a Dixmier trace.
Let w : £oo(N) — C be an extended limit (i.e., a norm 1 bounded
extension of the “limit” functional). The Dixmier trace of a positive
operator T € L1  is defined as:

ﬂw(T)::w({log +2) Z“k( )} )

n=0
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Dixmier traces and quantised integration

Connes also proposed a quantised integral, given by a Dixmier trace.
Let w : £oo(N) — C be an extended limit (i.e., a norm 1 bounded
extension of the “limit” functional). The Dixmier trace of a positive
operator T € L1  is defined as:

ﬂw(T)::w({log +2) Z“k( )} )

n=0

It can be proved that Tr,, extends to a linear functional on £
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Dixmier traces and quantised integration

Connes also proposed a quantised integral, given by a Dixmier trace.
Let w : £oo(N) — C be an extended limit (i.e., a norm 1 bounded
extension of the “limit” functional). The Dixmier trace of a positive
operator T € L1  is defined as:

ﬂw(T)::w({log +2) Z“k( )} )

n=0

It can be proved that Tr,, extends to a linear functional on £
Tr,, vanishes on any infinitesimal of order larger than 1, and moreover on
L.
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Dixmier traces and quantised integration

Connes also proposed a quantised integral, given by a Dixmier trace.
Let w : £oo(N) — C be an extended limit (i.e., a norm 1 bounded
extension of the “limit” functional). The Dixmier trace of a positive
operator T € L1  is defined as:

ﬂw(T)::w({log +2) Z“k( )} )

n=0

It can be proved that Tr,, extends to a linear functional on £

Tr,, vanishes on any infinitesimal of order larger than 1, and moreover on
L.

Connes suggests that Tr,,(T) should be interpreted as “the integral of the
order 1 infinitesimal T".
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Other traces on L .

Dixmier's trace is called a trace due to satisfying the property:
Tr,(BA) = Tr,(AB), A€ Li1,B € B(H).

There are many other linear functionals ¢ : £1 o — C which satisfy this
property.
Of particular interest in this talk are continuous traces. A trace ¢ is called

continuous if:

lo(T)| < Csup npun(T).
n>0
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Other traces on L .

Dixmier's trace is called a trace due to satisfying the property:
Tr,(BA) = Tr,(AB), A€ Li1,B € B(H).

There are many other linear functionals ¢ : £1 o — C which satisfy this
property.
Of particular interest in this talk are continuous traces. A trace ¢ is called

continuous if:

lo(T)| < Csup npun(T).
n>0

Dixmier traces are continuous.
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The unit circle

We can get a tractable special case by considering the unit circle:

T={zeC:|z| =1}

e Fredholm module: A = C(T),H = Lo(T).
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The unit circle

We can get a tractable special case by considering the unit circle:

T={zeC:|z| =1}

e Fredholm module: A = C(T),H = Lo(T).
e F is the Hilbert transform: for g = " _, &(n)z" € L»(T),

Fg = sgn(n)g(n)z"

nez
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The unit circle

df is related to a Hankel operator:
© Nehari 1957: df is bounded iff f has bounded mean oscillation
(sup, ﬁf, |f — filds < o)
@ Coifman-Rochberg-Weiss 1976: df is compact iff f € VMO
(im0 i J; If = filds = 0)

1
© Peller 1980: df € L, iff f is in a certain Besov space (B (T))

@ With real interpolation it is possible to obtain necessary and sufficient
conditions for df € L, 4.
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d-Torus T9 (d > 2)

There is also a canonical Fredholm module for functions on the
d-dimensional torus TY.
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d-Torus T9 (d > 2)

There is also a canonical Fredholm module for functions on the
d-dimensional torus TY.

The d-dimensional version of the Hilbert transform is a Riesz transform

Rj, j=1,...,d, defined on a Fourier basis element z"z)* - z;¢ by:
n:
R,(anz”2 .. an) _ J Zm., . Nd
jl21 25 4 )
T By TR
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d-Torus T? (d > 2)

There is also a canonical Fredholm module for functions on the
d-dimensional torus TY.

The d-dimensional version of the Hilbert transform is a Riesz transform

Rj, j=1,...,d, defined on a Fourier basis element z"z)* - z;¢ by:
ni
(M0 ndY j mo. .. N
Ri(z" 2, z,') = 2q -

Z
(n%+n%+...+n3)l/2 1

Let {’yj}le be the Euclidean v matrices in dimension d. That is, specific
N x N matrices satisfying vk + vk = 20; k1 where N = 2ld/2],
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d-Torus T? (d > 2)

There is also a canonical Fredholm module for functions on the
d-dimensional torus TY.
The d-dimensional version of the Hilbert transform is a Riesz transform

Rj, j=1,...,d, defined on a Fourier basis element z"z)* - z;¢ by:
ni
(M0 ndY j mo. .. N
Ri(z" 2, z,') = 2q -

Z
(n%+n%+...+n3)l/2 1

Let {’yj}le be the Euclidean v matrices in dimension d. That is, specific
N x N matrices satisfying vk + vk = 20; k1 where N = 2ld/2],

e Fredholm module: A := C(T9),H := CN ® Ly(T9), n(f) := 1y ® My
and

d
F= Z’}/j ® RJ'.
j=1
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d-Torus T? (d > 2)

There is also a canonical Fredholm module for functions on the
d-dimensional torus TY.
The d-dimensional version of the Hilbert transform is a Riesz transform

Rj, j=1,...,d, defined on a Fourier basis element z"z]? -

nq .
- zy? by:
nj m

ny_n n
Ri(z 22 - 20) = (n%+n§+"'+”3)1/221

nq
Zd .

Let {’yj}le be the Euclidean v matrices in dimension d. That is, specific
N x N matrices satisfying vk + vk = 20; k1 where N = 2ld/2],

e Fredholm module: A := C(T9),H := CN ® Ly(T9), n(f) := 1y ® My
and

d
F= Z’}/j ® RJ'.
j=1

This is a Fredholm module: by construction we have F = F* and F? = 1.
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d-Torus T? (d > 2)

© Coifman-Rochberg-Weiss 1976: df is bounded iff f € BMO,;
df is compact iff f € VMO.

d
@ Janson-Wolff 1982: For p > d, df € L, iff f € BSp;
for p < d, df € L, iff f is constant.

© Real interpolation gives equivalent conditions for df € L, 4.
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d-Torus T? (d > 2)

© Coifman-Rochberg-Weiss 1976: df is bounded iff f € BMO,;
df is compact iff f € VMO.

d
@ Janson-Wolff 1982: For p > d, df € L, iff f € BSp;
for p < d, df € L, iff f is constant.

© Real interpolation gives equivalent conditions for df € L, 4.

e Similar results hold for R and RY.
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df € Ly for f on R? (or TY)

Why do we describe df € L4507

This condition is important in noncommutative differential geometry. If df
is in L4 o then we can form the “integral”

Tr,(fodfidfy - - - dfy)
in analogy to an integral:

/fodfldfg--'dfd.
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df € Ly for f on R? (or TY)

Why do we describe df € L4507

This condition is important in noncommutative differential geometry. If df
is in L4 o then we can form the “integral”

Tr,(fodfidfy - - - dfy)
in analogy to an integral:
/fodfldfg---dfd.
e Connes-Sullivan-Teleman 1994: For locally integrable f, df € Ly o iff
feWws.
(Ifllia = NO1Flla + - - + 0af )
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df € Ly for f on R? (or TY)

Why do we describe df € L4507
This condition is important in noncommutative differential geometry. If df
is in L4 o then we can form the “integral”

Tr,(fodfidfy - - - dfy)

in analogy to an integral:

/fodfldfg---dfd.
e Connes-Sullivan-Teleman 1994: For locally integrable f, df € Ly o iff
feWws.
(Ifllia = NO1Flla + - - + 0af )
e Lord-McDonald-S-Zanin 2017 give a different proof. Moreover,

1 1

p(laf1h)s = Call( Y 10;f)?|la
1<j<d

for any continuous normalized trace ¢ on L .

F. Sukochev Quantum differentiability February 25, 2019 13 /23



Quantum Tori are the most heavily studied “noncommutative spaces”

(i.e., noncommutative algebras with many of the features of algebras of
functions on spaces).
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Quantum Tori are the most heavily studied “noncommutative spaces”
(i.e., noncommutative algebras with many of the features of algebras of
functions on spaces).
e Noncommutative tori: d > 2 and § = (6y;) real skew-symmetric
d x d-matrix. The quantum torus C(T¢) is the universal C*-algebra
generated by d unitaries Ui, ..., Uy satisfying the following commutation
relation

UeU; = 2% U Uy, jok=1,...,d.
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Quantum Tori are the most heavily studied “noncommutative spaces”
(i.e., noncommutative algebras with many of the features of algebras of
functions on spaces).
e Noncommutative tori: d > 2 and § = (6y;) real skew-symmetric
d x d-matrix. The quantum torus C(T¢) is the universal C*-algebra
generated by d unitaries Ui, ..., Uy satisfying the following commutation
relation

UeU; = 2% U Uy, jok=1,...,d.

e Trace: Let Py denote the involutive subalgebra of polynomials in
Ui, Uo, ..., Uy, dense in C(’]I‘g). For any polynomial x =3 4 U™
define 7(x) = ag. Then T extends to a faithful tracial state on C(T).
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Quantum Tori are the most heavily studied “noncommutative spaces”
(i.e., noncommutative algebras with many of the features of algebras of
functions on spaces).
e Noncommutative tori: d > 2 and § = (6y;) real skew-symmetric
d x d-matrix. The quantum torus C(T¢) is the universal C*-algebra
generated by d unitaries Ui, ..., Uy satisfying the following commutation
relation

UeU; = 2% U Uy, jok=1,...,d.

e Trace: Let Py denote the involutive subalgebra of polynomials in

Uy, Us, ..., Uy, dense in C(’]I‘g). For any polynomial x =3 4 U™
define 7(x) = ag. Then T extends to a faithful tracial state on C(T).

Let Lo(T¢) be the weak-operator-topology closure of C(T¢) in the GNS
representation of 7. Then 7 becomes a normal faithful tracial state on the
von Neumann algebra Loo(T§).
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Quantum Tori are the most heavily studied “noncommutative spaces”
(i.e., noncommutative algebras with many of the features of algebras of
functions on spaces).
e Noncommutative tori: d > 2 and § = (6y;) real skew-symmetric
d x d-matrix. The quantum torus C(T¢) is the universal C*-algebra
generated by d unitaries Ui, ..., Uy satisfying the following commutation
relation

UeU; = 2% U Uy, jok=1,...,d.

e Trace: Let Py denote the involutive subalgebra of polynomials in

Uy, Us, ..., Uy, dense in C(’]I‘g). For any polynomial x =3 4 U™
define 7(x) = ag. Then T extends to a faithful tracial state on C(T).

Let Lo(T¢) be the weak-operator-topology closure of C(T¢) in the GNS
representation of 7. Then 7 becomes a normal faithful tracial state on the
von Neumann algebra Loo(T§).

LOO(’]I'g) is the unique hyperfinite type I1; factor (for “typical” 0).
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Calculus on quantum tori

The trace 7 is like an integral, and there is a noncommutative measure
theory:

e Noncommutative L -spaces: For 1 < p < oo and x € LOO(’]I‘(‘;’) let
1
Ixllp = (7(|x|P)) > with |x| = (x*x)2. This defines a norm on Loo(TY).
The corresponding completion is denoted by Lp(’I[‘g).
Note that L,(Tg) is exactly the GNS space of 7.
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Calculus on quantum tori

The trace 7 is like an integral, and there is a noncommutative measure
theory:

e Noncommutative L -spaces: For 1 < p < oo and x € LOO(’]I‘(‘;’) let
x|, = (T(|X|p))’l’ with |x| = (x*x)2. This defines a norm on Loo(TY).
The corresponding completion is denoted by Lp(’I[‘g).

Note that L,(Tg) is exactly the GNS space of 7.

e Partial derivatives on quantum tori: For j =1,...,d, the jth “partial
derivative 9; can be defined by:

6J-(U{’1 52 e Ugd) = injU{” cee Ugd.

Each 0; defines a derivation 0; : Py — Pp.
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Sobolev spaces on quantum tori

It is possible to define, for 1 < p < oo, the quantum torus Sobolev space
WX(Tg) which has a norm:

||X”ka(1rg) = Z 10%x]lp

la| <k

Similarly there are homogeneous Sobolev spaces:

xlleergy = D 18-

0<|a|<k
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A Fredholm module for quantum tori

Take A = C(TY); and H = CN ® L,(TY).
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A Fredholm module for quantum tori

Take A = C(TY); and H = CN ® L,(TY).

e Construction of F: D; = —i0; are self-adjoint, so is D =} ;v ® D;
By functional calculus

D.
F =sgn(D) = ZVJ ” ~
D; -+ Dj

Then F = F*, F2=1.
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A Fredholm module for quantum tori

Take A = C(T9); and H = CN ® L,(TY).

e Construction of F: D; = —i0; are self-adjoint, so is D = ZJ- v ® D;j.
By functional calculus

D.
F =sgn(D) = ZVJ ” ~
D; -+ Dj

Then F = F*, F2=1.

e Quantum derivative: Let M, : y — xy left multiplication representing
C(TY) on Lo(TY).
dx = i[F, My].
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Main results

Theorem (McDonald-S-Xiong. 2018)

For x € L5(T9), dx € Ly o iff x € WIH(TE).
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Main results

Theorem (McDonald-S-Xiong. 2018)

For x € L5(T9), dx € Ly o iff x € WIH(TE).

Theorem (McDonald-S-Xiong. 2018)

Let x € Lo(Tg) N W3(TY) be self-adjoint. For any continuous normalized
trace ¢ on L1 we have

d d
d
o(|dx|?) = cq /Sd—l T((Z |0jx — s; Zskﬁkx\z) 2)ds ~ [Ix]l -
=1 k=1
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Comparison to the commutative case

In the commutative (6 = 0) case then the formula for ¢(|d@x|?) has been
known since the 1980s (Connes. 1988)

d/2

d
Ao =ca [ | SlofP) e
j=1

It is insightful to explain how the noncommutative case reduces to the
commutative case.
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Comparison to the commutative case

Our formula is:

d
d
ax|9) = ¢ (/ Jix —s skOkx|?) 2 d )
cllaxt?)y = ar ([ (O oy > sl
j=1 k=1
If everything is commuting, we can take out a factor of:

2
d a9/

1VxlIg = | > 19

Jj=1

and let u; = ”VX” to get:

Nl

o(|dx|?) = cqg | |Vx|I§ / Z luj — s; Zskuk]2 ds
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Comparison to the commutative case

Examine the inner integral:

[SIEE

1= Zyu,_s,zskm ds.
S i

Recall that u; = is a function on T9, so 7 is actually a function on
T,

For each t € T?, we have:

- IIVXH2

[SI N

d
1= [ Z|uj )5 s | ds
k=1
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Comparison to the commutative case

Now for each fixed t, (u1(t), ua(t), ..., uq(t)) is a particular fixed unit
vector in RY. Using the rotational invariance of the integral over S9~1, we
can choose coordinates such that (ui(t), ua(t),...,uq(t)) = (1,0,...,0).
In these coordinates, Z(t) becomes:

1/2

Z(t 01 — d:
(© /S“_Zm sal*| ds

so there is no dependence on t! Thus Z is just a constant, and we recover:

d/2
d /

ORI DSICHE I
j=

where kg = c471.
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Thank you!
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