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1 Assumptions and Result

Let P be a 2 × 2 matrix-valued one-dimensional Schrödinger operator,

P =

 P1 hW

hW ∗ P2

 ,
where h > 0 is a small parameter and

Pj = h2D2
x + Vj(x), (Dx =

1

i

d

dx
),

W = W (x, hDx) = r0(x) + ir1(x)hDx

We suppose that V1(x) and V2(x) cross each other at one point and study the asymptotic distribution

as h → 0 of resonances near a fixed energyE0 ∈ R above the crossing level.
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1.1 Assumptions on V1, V2, E0 andW

(A1) V1(x), V2(x) are real-valued on R and analytic in

S := {x ∈ C ; |Imx| < δ0⟨Rex⟩}.

(A2) V1(x), V2(x) admit limits V ±
1 , V ±

2

as Rex → ±∞ in S , and

V +
2 < 0 < E0 < min(V ±

1 , V
−
2 ).

(A3) ∃a < ∃b < 0 < ∃c, s.t.

V1 > E0 on (−∞, a) ∪ (c,+∞),

V1 < E0 on (a, c),

V2 > E0 on (−∞, b),

V2 < E0 on (b,+∞),

V ′
1(a) < 0, V ′

1(c) > 0, V ′
2(b) < 0.
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(A4) V1(x) and V2(x) cross each other at one point x = 0

V1(0) = V2(0) = 0,

V ′
1(0) > 0, V ′

2(0) < 0.

(A5) r0, r1 are bounded analytic functions on S ,

real on R, and satisfy

(r0(0), r1(0)) ̸= (0, 0).

Note that

• (A5) means the ellipticity condition at (0,±
√
E0)

forW = r0(x) + ir1(x)hDx.
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Remark IfW ≡ 0 (which is not the case here), then we know

σ(P ) ∩ I = (σdisc(P1) ∪ σess(P2)) ∩ I,

for a small interval I ⊂ R nearE0.
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Remark IfW ≡ 0 (which is not the case here), then we know

σ(P ) ∩ I = (σdisc(P1) ∪ σess(P2)) ∩ I,

for a small interval I ⊂ R nearE0.

IfW ̸≡ 0, the perturbations (i.e. W,W ∗) may create resonances near σdisc(P1).

We expect to find resonances instead in the complex nbd of σdisc(P1).� �
Aim We want to study the asymptotic expansion of resonances with respect to h small enough,

in particular the imaginary part of the resonance (width of resonance).� �
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1.2 Resonances

A (quantum) resonance is defined by

E ∈ C− : resonance ⇔ ∃u ̸= 0 s.t.

 Pu = Eu,

u : “outgoing”

u : outgoing ⇔ u(xeiθ) ∈ L2(R) ⊕ L2(R) for small θ > 0.

In the 4 dimensional solution space, when ∃2 solutions in L2(R−) ⊕ L2(R−) and

∃2 solutions in L2(R+e
iθ) ⊕ L2(R+e

iθ), and then

E is a resonance iff these 4 solutions are linearly dependent.

We denote the set of resonances by Res (P ).

ForE ∈ Res (P ), (ImE)−1 is considered to be the life time of the quantum state.
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1.3 Results

Let I0 ⊂ R be an interval includingE0 such that

the function A : I0 7→ A(I0) given by

A(E) =

∫ c(E)

a(E)

√
E − V1(t)dt

is strictly increasing. Here a(E) (resp. c(E)) is the unique

root of V1 = E close to a (resp. c). For k ∈ Z with

(k + 1
2
)πh ∈ A(I0), we set

ek(h) := A−1((k +
1

2
)πh).

Note that the quantity A(E0) stands for the area bounded by

the characteristic set p−1
1 (E0).

We fix a small δ0 > 0 and an arbitrarily largeC0 > 0, and

let Dh(δ0, C0) = [E0 − δ0, E0 + δ0] − i[0, C0h].
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Theorem For h small enough, we have

Res(P ) ∩ Dh(δ0, C0) = {Ek(h); k ∈ Z} ∩ Dh(δ0, C0)

with complex numbersEk(h)’s satisfying

(i) ReEk(h) = ek(h) + O(h2),

(ii) ImEk(h) = −C(ek(h))h
2 + O(h7/3),

where

C(E) =
π

γA′(E)

∣∣∣∣r0(0)E
− 1

4 sin

(
B(E)

h
+

π

4

)
+ r1(0)E

1
4 cos

(
B(E)

h
+

π

4

)∣∣∣∣2
with γ := V ′

1 (0) − V ′
2 (0) > 0,

B(E) :=

∫ 0

b(E)

√
E − V2(x)dx +

∫ c(E)

0

√
E − V1(x)dx,

where b(E) is the unique root of V2(x) = E close to b.
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Note that the quantity B(E0) stands for the area bounded by

the characteristic sets p−1
1 (E0) and p−1

2 (E0).

B(E) :=

∫ 0

b(E)

√
E − V2(x)dx

+

∫ c(E)

0

√
E − V1(x)dx.
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1.4 Related works

We focus on the imaginary part of resonances.

• Exp. decay (Tunneling effect)

– Non-crossing case V1 = x2, V2 = −x − 1, E0 = 0

(Martinez 1994, Nakamura 1995, Baklouti 1998)

–

–

•

–
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1.8 Related works

We focus on the imaginary part of resonances.

• Exp. decay (Tunneling effect)

– Non-crossing case V1 = x2, V2 = −x − 1, E0 = 0

(Martinez 1994, Nakamura 1995, Baklouti 1998)

– Near the bottom of the well V1 (Grigis-Martinez 2014)

– Below the crossing (Ashida 2018)

• Polynomial decay

– Near the crossing

∗ elliptic interaction (F-M-W 2016); h5/3

∗ vector field interaction r0 ≡ 0 (F-M-W 2017); h7/3

– Above the crossing h2
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In our previous works (FMW 2016, 2017), we characterized the semiclassical distribution of resonances

near a crossing level (E0 = 0) by means of λk(h)h
2/3 instead of ek(h), and we obtained,

under the simple setting V ′
1(0) = −V ′

2(0) = 1,

ImEk = −
π2r0(0)

2

2
2
3A′(0)

(
Ai(−2

2
3λk)

)2
h

5
3 + O(h2) (FMW1)

ImEk = −
π2r1(0)

2

2
4
3A′(0)

(
Ai′(−2

2
3λk)

)2
h

7
3 + O(h

8
3 ) (FMW2) : r0(x) ≡ 0

where Ai stands for the Airy function Ai(x) := 1
2π

∫
R exp

[
ixξ + ξ3/3

]
dξ.

From the asymptotic behavior of Ai(x) as x → −∞, one sees if λk → ∞(
Ai(−2

2
3λk)

)2
∼

1

π
2− 1

3λ
− 1

2

k sin2

(
4

3
λ
3/2
k +

π

4

)
(
Ai′(−2

2
3λk)

)2
∼

1

π
2+ 1

3λ
+ 1

2

k cos2
(
4

3
λ
3/2
k +

π

4

)
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Regarding ek(h) as λkh
2/3 (i.e. crossing levelE0 = 0), we can confirm the matching the main result

and our previous results. By using the asymptotic formula of Airy function, we have if λk → ∞

ImEk ∼ −
πr0(0)

2

2A′(0)
λ
− 1

2

k h
5
3 sin2

(
4

3
λ

3
2

k +
π

4

)
(FMW1)

ImEk ∼ −
πr1(0)

2

2A′(0)
λ

1
2

kh
7
3 cos2

(
4

3
λ

3
2

k +
π

4

)
(FMW2)

On the contrary, in this case, γ = 2, A′(λkh
2
3 ) ∼ A′(0) and B(λkh

2
3 ) ∼ 4

3
λ

3
2

kh, so that

the main result, that is ImEk behaves like

−
πh2

γA′(E)

∣∣∣∣r0(0)E− 1
4 sin

(B(E)

h
+
π

4

)
+ r1(0)E

1
4 cos

(B(E)

h
+
π

4

)∣∣∣∣2
withE = λkh

2
3 , reproduces the above formulae of the previous results.
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2 Sketch of proof

1st step Construction of resonant states

• Constructing out-going solutions (resonant states), i.e. checking the existence of them

• Computing the wronskian of them and deriving a rough estimate of resonances

2nd step Microlocal approach for precise asymptotics

• Connecting along the characteristic sets a normalized microlocal WKB solution which vanishes

on the characteristic set corresponding to the in-coming trajectory

• Studying the connection formulae over the crossing point and the turning points

– Through the crossing point, applying the reduction to a single-valued normal form

(Helffer-Sjöstrand)

– Through the turning point, applying the Maslov theory

• The connection along the closed trajectory refines the rough estimate obtained in the 1st step

• The connection toward the out-going trajectory gives the precise estimate of the imaginary part
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2.1 Construction of resonant states

1. Construct 2 pairs of independent outgoing solutionsw1,L, w2,L ∈ L2(R−) ⊕ L2(R−) and

w1,R, w2,R ∈ L2(R+e
iθ) ⊕ L2(R+e

iθ).

2. Compute the wronskian W(E, h) of these solutions:

W(E, h) = cos A(E)
h

+ O(h1/6).

3. Deduce a rough estimate of resonances from the quantization condition W(E, h) = 0 :

Ek(h) = ek(h) + O(h7/6).

The method of this part is essentially same as that of our previous work, which reduces the problem of

the system to that of the single-valued problem of studying the fundamental solutions (Pj − E)−1.
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2.2 Microlocal approach for precise asymptotics

Let u ∈ L2 and (x0, ξ0) be a point of the phase space Rx × Rξ.

Definition We denote u ∼ 0 at (x0, ξ0) if ∃δ > 0 s.t. as h → 0,

(Tu)(x, ξ;h) :=

∫
ei(x−y)ξ/h−(x−y)2/(2h)u(y)dy = O(e−δ/h),

uniformly in a neighborhood of (x0, ξ0).

We say u is a microlocal solution of (P − E)u = 0 in Ω ⊂ Rx × Rξ, if (P − E)u ∼ 0 in Ω.

• If u is a solution to (P − E)u = 0, u is microlocally supported on the characteristic set,

Γj = {(x, ξ); |ξ|2 + Vj(x) = E}, Γ = Γ1 ∪ Γ2.

• On Γ, WKB solutions f±
j,S are microlocally defined on each of 8 curves Γ±

j,S

(j = 1, 2, S = L,R), except at

– 3 turning points (a(E), 0), (b(E), 0) and (c(E), 0)

– 2 crossing points ρ+ = (0,
√
E) and ρ− = (0,−

√
E).
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2.2.1 Microlocal WKB solutions (near ρ−(E))

On each Γ±
j,S(E) (j = 1, 2, S = R,L), the space of microlocal solutions is one dimensional,

and a basis is given by

f±
1,S ∼

(
a
±
1

ha
±
2

)
e±iν1(x)/h on Γ±

1,S(E), f±
2,S ∼

(
hb

±
1

b
±
2

)
e±iν2(x)/h on Γ±

2,S(E),

Here, for j = 1, 2, the phase function is νj(x) :=
∫ x
0

√
E − Vj(t) dt,

a±
j (x;h) ∼

∑
k≥0

hka−
j,k(x), b±j (x;h) ∼

∑
k≥0

hkb−j,k(x)

In particular,

a1,0 =
1

(E − V1)
1
4

; a2,0 =
r0 + ir1

√
E − V1

(V1 − V2)(E − V1)
1
4

.

b2,0 =
1

(E − V2)
1
4

; b1,0 =
r0 − ir1

√
E − V2

(V2 − V1)(E − V2)
1
4

.

These microlocal solutions are not defined at turning points (Vj = E) and crossing points (V1 = V2).
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2.2.2 Microlocal connection

Starting from u ∼

 f−
1,L on Γ−

1,L,

0 on Γ−
2,R,

we connect the microlocal WKB solutions along the

characteristic sets.

Note that, if u is a resonant state, u ∼ 0 on the incoming trajectory Γ−
2,R.
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We connect the microlocal WKB solutions over the crossing point ρ−(E).

Thanks to the ellipticity condition (A5), this problem can be reduced to the connection problem for

single-valued equation, whose characteristic sets cross transversally. Such method was given by

Helffer-Sjöstrand.
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We connect the microlocal WKB solutions over the turning points (b(E), 0) and (c(E), 0).

Maslov theory gives the connection formula through the equation with respect to the momentum variable ξ.
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We also connect the microlocal WKB solutions over the crossing point ρ+(E).

Then we obtain the coefficients t+1,L and t+2,R of u ∼

 t+1,Lf
+
1,L on Γ+

1,L,

t+2,Rf
+
2,R on Γ+

2,R,
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Continuing u from Γ+
1,L to Γ−

1,L over the turning point (a(E), 0), we get u ∼ t−1,Lf
−
1,L on Γ−

1,L

with t−1,L = −e2iA(E)/h + O(h), and hence more precise Bohr-Sommerfeld quantization rule

−e2iA(E)/h = 1 + O(h).
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ImE is computed from t+2,R via the formula for x0 > c(E):

−ImE =
h2

∥u∥2
L2((−∞,x0])

Im
(
u′
1u1 + u′

2u2 − r1u2u1

)
|x=x0 .

One sees that, forE ∈ Dh(δ0, C0) ∩ R, ∥u∥2
L2((−∞,x0])

= 2A′(E)1/2 + O(h1/3).
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Proposition 1 (Via crossing point) Let u be a microlocal solution near ρ−(E) and suppose

u ∼ t−j,Sf
−
j,S on Γ−

j,S(E),

for each j = 1, 2, S = L,R. Then, forE ∈ Dh(δ0, C0), one has t−1,R

t−2,L

 =

 τ−
1,1(E, h) τ−

1,2(E, h)

τ−
2,1(E, h) τ−

2,2(E, h)


 t−1,L

t−2,R

 ,
τ−
1,1 = 1 + O(h), τ−

1,2 = ei
π
4 τ−h

1
2+iµh + O(h

3
2 ),

τ−
2,1 = e−i

π
4 τ+h

1
2−iµh + O(h

3
2 ), τ−

2,2 = 1 + O(h),

τ± =

√
π

γ

(
r0(0)E

− 1
4 ± ir1(0)E

1
4

)
.
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2.2.3 Sketch of the proof of Proposition

(A5) implies (P − E)v ∼ 0 ⇔
Qv1 ∼ 0, Q := W (P2 − E)W−1(P1 − E) − h2WW ∗

v2 ∼ Rv1, R = −h−1W−1(P1 − E)

microlocally near ρ−(E). Since ρ−(E) is a saddle point of the principal symbol ofQ:

(ξ2 + V1(x) − E)(ξ2 + V2(x) − E),Q is reduced to:

UF (Q, h)U−1 =
1

2
(yhD + hDy) (= (yη)W ),

with a Fourier integral operatorUu =
∫
R e

iψ(x,y)/hc(x, y;h)u(y)dy and an analytic symbol

F (t, h) (Helffer-Sjöstrand).
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In our case, we have

ψ(x, y) = −
τ2

4
√
E
x2 −

√
E

γ
y2 + xy +

√
Ex+ O(|(x, y)|3),

F (0, h) = −
i

2
h+ µh2, µ = −

r0(0)
2 + r1(0)

2E

2γ
√
E

+ O(h),

where τ1 = V ′
1(0) and τ2 = −V ′

2(0). The reduced equation for v = Uu1 is

1

2
(yhD + hDy)v = F (0, h)v

and it has a basis of solutions

v⊢(y) = H(y)yiµh, v⊣(y) = H(−y)|y|iµh.

The problem is thus reduced to the analysis of an integral of the form

u⊢
1 (x) := Uv⊢ =

∫ ∞

0

eiψ(x,y)/hc(x, y;h)yiµhdy.
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Computing the microlocal asymptotics of u⊢
1 (x) and u⊣

1 (x) near Γj,S and comparing with WKB

solutions, we obtain

v⊢ ∼



α⊢
R h

iµh f2,R on Γ2,R(E);

α⊢
L h

iµh f2,L on Γ2,L(E);

β⊢
R

√
h f1,R on Γ1,R(E);

0 on Γ1,L(E),

whereα⊢
S ∼

∑
k≥0 h

kα⊢
S,k (S = L,R) β⊢

R ∼
∑
k≥0 h

kβ⊢
R,k, and in particular

α⊢
L,0 = α⊢

R,0 =
iγE

1
4

r0(0) + ir1(0)
√
E
; β⊢

R,0 =
√
πγe−iπ/4.
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Similarly, we have

v⊣ ∼



α⊣
R h

iµh f2,R on Γ2,R(E)

α⊣
L h

iµh f2,L on Γ2,L(E);

0 on Γ1,R(E);

β⊣
L

√
h f1,L on Γ1,L(E),

whereα⊣
S ∼

∑
k≥0 h

kα⊣
S,k, β⊣

S ∼
∑
k≥0 h

kβ⊣
S,k, for S = L,R, and in particular

α⊣
L,0 = α⊣

R,0 = −
iγE

1
4

r0(0) + ir1(0)
√
E
; β⊣

L,0 =
√
πγeiπ/4.
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Proposition 2 (Via turning points) For S = L,R, it holds that

t+1,S = σ1,St
−
1,S

with constants σ1,S which behave as h → 0

σ1,L = −ie2iS1,L/h + O(h), σ1,R = ie−2iS1,R/h + O(h),

where S1,S are the action integrals defined by

S1,L(E) =

∫ 0

a

√
E − V1(t)dt, S1,R(E) =

∫ c

0

√
E − V1(t)dt.

Similarly it holds that

t+2,L = σ2,Lt
−
2,L

with

σ2,L = −ie2iS2,L/h + O(h),

where S2,L are the action integrals defined by

S2,L(E) =

∫ 0

b

√
E − V2(t)dt.
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Thank you for your attention.
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