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1 Assumptions and Result

Let P be a 2 X 2 matrix-valued one-dimensional Schrodinger operator,

P, hW
P= :
AW* P,

where h. > 0 is a small parameter and
1 d
P; thDi‘l-V}'(iU), (D = ——),
1 dx
W =W (x,hD,) = ro(x) + ir1(x)hD,

We suppose that V3 (x) and V5 (@) cross each other at one point and study the asymptotic distribution

as h — 0 of resonances near a fixed energy g € R above the crossing level.



1.1 Assumptionson V7, V5, Egand W

(A1) Vi (), Va(x) are real-valued on R and analytic in
S:={x e C; |Imx| < dp(Rex)}.

(A2) V4 (), Va(z) admit limits V;E, V5
asRex — +o0in S, and

Vot <0 < Eg < min(ViE, V).

(A3) da < db < 0 < dc, s.t.

Vi > Egon(—o0,a) U (¢, +00),

Vi < Egon(a,c),

Vo > Egon(—oo,b),

Vo < Egon (b, +00),

V/(a) <0, V/(ec) >0, V,(b) <O.




(A4) V1 () and V5 () cross each other at one pointx = 0
V1(0) = V»(0) = 0,

V/(0) >0, V/(0) < o0.

(A5) rg, 1 are bounded analytic functions on S,

real on IR, and satisfy

(10(0),71(0)) # (0,0).

Note that

e (A5) means the ellipticity condition at (0, =4/ Eg)
for W = rog(x) + ir1(x)hD,.




Remark If W = 0 (which is not the case here), then we know
o(P)NI = (04 (P1) Uoes(P2)) NI,

for a small interval I C R near Ejy.
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Remark If W = 0 (which is not the case here), then we know
o(P) NI = (04s(P1) U Goss(P2)) N I,

for a small interval I C R near Ejy.
If W £ 0, the perturbations (i.e. W, W ™) may create resonances near o s (P1).

_ﬁ=§=g==>
O ess (P2> il ; i Re E
) 4 ) 4 ¥ resonances

We expect to find resonances instead in the complex nbd of & gisc (P ).

Aim We want to study the asymptotic expansion of resonances with respect to A small enough,

in particular the imaginary part of the resonance (width of resonance).




1.2 Resonances

A (quantum) resonance is defined by

Pu = Fu,
E € C_ :resonance < du # Os.t.
u : “outgoing”

u : outgoing <> u(xze*®) € L2(R) & L3(R) for small @ > 0.

In the 4 dimensional solution space, when 32 solutions in L%(R_) @ L?(R_) and
32 solutions in L2 (R . e*®) @ L?(Re*?), and then

E is a resonance iff these 4 solutions are linearly dependent.

We denote the set of resonances by Res (P).

For E € Res (P), (ImE) ! is considered to be the life time of the quantum state.



1.3 Results

Let Io C R be an interval including F¢g such that
the function A : Iy — A(Ip) given by
c(E)

A(E) = VE — Vi(t)dt

a(FE)

is strictly increasing. Here a(F) (resp. c(F)) is the unique
root of Vi = F close to a (resp. ¢). For k € Z with
(k+ 3)mh € A(Io), we set

ex(h) := A 1 ((k + %)ﬂ'h).

Note that the quantity A(Eg) stands for the area bounded by

the characteristic set p; ~ (Eo).

We fix a small dg > 0 and an arbitrarily large Co > 0, and
let Dh(do, Co) = [EO — 50, Eo + 50] — ’L[O, C()h]
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Theorem For h small enough, we have

Res(P) M Dh(éo, C()) = {Ek(h); k - Z} M Dh(éo, C())
with complex numbers E (h)’s satisfying

(i) Re Ex(h) = ei(h) + O(h?),

(ii) ImEx(h) = —C(er(h))h? + O(R7/3),
where
o7 1. (BE) |« 1 (BE)  w 2
C(E) = A (E) ro(0)E™ 4 sin (T + Z) +r(0)E <—h + 4)
with v := V7 (0) — V5 (0) > 0,
0] c(E)
B(E) := ( ;/E — Vo(x)dx + VE — Vi(x)dx,

where b( E) is the unique root of V2 (x) = E close to b.



Note that the quantity B(Eg) stands for the area bounded by
the characteristic sets p; ~ (Fo) and p5 * (Eqp).

B(E) := /b V- V(@)
c(E)
+ VE — Vi(x)dx.

10



1.4 Related works

We focus on the imaginary part of resonances.

e Exp. decay (Tunneling effect)
— Non-crossingcase Vi3 = 2, Vo = —x — 1, Eg = 0
(Martinez 1994, Nakamura 1995, Baklouti 1998)
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1.5 Related works

We focus on the imaginary part of resonances.

e Exp. decay (Tunneling effect)
— Non-crossingcase Vi3 = 2, Vo = —x — 1, Eg = 0
(Martinez 1994, Nakamura 1995, Baklouti 1998)
— Near the bottom of the well V7 (Grigis-Martinez 2014)
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1.6 Related works

We focus on the imaginary part of resonances.

e Exp. decay (Tunneling effect)
— Non-crossingcase Vi3 = 2, Vo = —x — 1, Eg = 0
(Martinez 1994, Nakamura 1995, Baklouti 1998)

— Near the bottom of the well V7 (Grigis-Martinez 2014)

— Below the crossing (Ashida 2018)

Ashida (2018)
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1.7 Related works

We focus on the imaginary part of resonances.

e Exp. decay (Tunneling effect) t B

— Non-crossingcase Vi3 = 2, Vo = —x — 1, Eg = 0
(Martinez 1994, Nakamura 1995, Baklouti 1998)

— Near the bottom of the well V7 (Grigis-Martinez 2014)

— Below the crossing (Ashida 2018) Fujiié-Martinez-

Watanabe
(2016, 2017)

e Polynomial decay

— Near the crossing
x elliptic interaction (F-M-W 2016); h°/3

% vector field interaction 7 = 0 (F-M-W 2017); h7/3 ;\/
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1.8 Related works

We focus on the imaginary part of resonances.

e Exp. decay (Tunneling effect)
— Non-crossingcase Vi3 = 2, Vo = —x — 1, Eg = 0
(Martinez 1994, Nakamura 1995, Baklouti 1998)
— Near the bottom of the well V7 (Grigis-Martinez 2014)

— Below the crossing (Ashida 2018)

e Polynomial decay
— Near the crossing
x elliptic interaction (F-M-W 2016); h°/3
% vector field interaction rqg = 0 (F-M-W 2017); h7/3

— Above the crossing h?
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In our previous works (FMW 2016, 2017), we characterized the semiclassical distribution of resonances
near a crossing level (Eg = 0) by means of Ag (h)h2/3 instead of e, (h), and we obtained,

under the simple setting V;/(0) = —V;(0) = 1,
772’1"0(0)2 2 2 5
mE;, = —— Ai(—23 ) hs + O(h? FMW1
mBe = —57 by (AiC23Ww) hE Lot FMWY)
71'27°1(0)2 2 2 4 8
mE, = —— Ai'(—235 )X hs + O(hs FMW2) : =0
mBe =~ 51 po) (A2 R+ 0MY) - FMW2) : ro(a)

where A1 stands for the Airy function Ai(x) := % [ exp i€ + £3/3] dE.

From the asymptotic behavior of Ai(x) as * — — o0, one sees if A\, — 00

2 2 1 1. —1 4
(Ai(=28x0)) ~ —27 85, sin® (gAZ/z + %)

2 2 1 1 41 4
(Ai'(—2§>‘k)> ~ ;24-5)\":2 Ccos>2 <_>‘Z/2 4 Z)
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Regarding e (h) as Ah2/3 (i.e. crossing level Eg = 0), we can confirm the matching the main result

and our previous results. By using the asymptotic formula of Airy function, we have if A\, — oo

m E mro(0) \ —5 ) 5 in2 (4>\% n 77) (FMW1)
~ — s sin” | — —
m ok 2.47(0) * 37k T}
mr1(0)* 1 . L, (4 s 7
ImEf ~ — 24/ (0) AZh3 cos §>\’<’ + 1 (FMW2)

3
On the contrary, in this case, ¥ = 2, A’(Agh3) ~ A’(0) and B(Agh3) ~ %)\g h, so that
the main result, that is Im Eg, behaves like

2 2

wh

- YA/(E)

ro(0)E~ 1 sin (@ n %) + 7 (0)E* cos (@ n 2)

with /. = )\khg, reproduces the above formulae of the previous results.
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2 Sketch of proof

1st step Construction of resonant states
e Constructing out-going solutions (resonant states), i.e. checking the existence of them

e Computing the wronskian of them and deriving a rough estimate of resonances

2nd step Microlocal approach for precise asymptotics

e Connecting along the characteristic sets a normalized microlocal WKB solution which vanishes

on the characteristic set corresponding to the in-coming trajectory

e Studying the connection formulae over the crossing point and the turning points

— Through the crossing point, applying the reduction to a single-valued normal form
(Helffer-Sjostrand)
— Through the turning point, applying the Maslov theory

e The connection along the closed trajectory refines the rough estimate obtained in the 1st step

e The connection toward the out-going trajectory gives the precise estimate of the imaginary part
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2.1 Construction of resonant states
1. Construct 2 pairs of independent outgoing solutions w1, 1., w21, € L*(R_) @& L*(R_) and
Wi,Ry W2,R - L2 (R_I_ew) ) L2 (R+ei9).
2. Compute the wronskian W(E, h) of these solutions:

W(E, h) = cos A%E) + O(h'/9).

3. Deduce a rough estimate of resonances from the quantization condition W(FE,h) = O :
Er(h) = er(h) + O(R"/9).

The method of this part is essentially same as that of our previous work, which reduces the problem of

the system to that of the single-valued problem of studying the fundamental solutions (Pj — E)_l.
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2.2 Microlocal approach for precise asymptotics

Letu € L? and (xg, &o) be a point of the phase space R X Re.

Definition We denote © ~ 0 at (xg, o) if 30 > 0st.ash — 0,

(Tu) (@, & h) = / eHm VSR Emn BN u(y)dy = O(e™*/"),

uniformly in a neighborhood of (g, &o)-
We say u is a microlocal solution of (P — E)u = 0in Q2 C Ry X Rg,if (P — E)u ~ 0in €.
e If u is a solution to (P — E)u = 0, u is microlocally supported on the characteristic set,

Lj ={(z,8); 1>+ Vj(z) = E}, I'=T1UT,.

e OnI', WKB solutions f-j’:S are microlocally defined on each of 8 curves I‘ji’s
(1 =1,2,5 = L, R), except at
— 3 turning points (a(FE),0), (b(E),0) and (c(E), 0)
— 2 crossing points py = (0,+/E) and p_ = (0, —VE).
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2.2.1 Microlocal WKB solutions (near p_ (E))

On each I‘ji,S(E) (7 =1,2,5 = R, L), the space of microlocal solutions is one dimensional,
and a basis is given by

+ +

a ivq (2 hb s (@

fl:lfS ~J (h;:lz> €:|: 1(x)/h on I‘il:,S(E)’ f2:|,:S ~Y (b:é) e:l: 2(x)/h on F;I:,S(E),
2 2

Here, for j = 1, 2, the phase function is v; () := [ /E — V;(t) dt,

a> (z;h) ~ Y h*ai(x), bF(z;h) ~ > h*b;,(z)

k>0 k>0
In particular,
1 To —|— ’l:’l"l\/E — Vl
ai,o = T 3y a2,0 = 1
(E—V1)4 (Vl —Vz)(E—V1)4
1 To — ’I:’I“l\/E — V2
b2o = T 3 bio= T
(E — V2)4 (V2 — Vl)(E — V2)4

These microlocal solutions are not defined at turning points (V; = E) and crossing points (V1 = V3).
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2.2.2 Microlocal connection

fl_’L on I‘l_,L,
Starting from u ~ we connect the microlocal WKB solutions along the
0 on Fz_,Rv

characteristic sets.

Note that, if w is a resonant state, . ~ 0 on the incoming trajectory Fz_,R-

+ f2+R
1. :

24



We connect the microlocal WKB solutions over the crossing point p_ (E).

Thanks to the ellipticity condition (A5), this problem can be reduced to the connection problem for
single-valued equation, whose characteristic sets cross transversally. Such method was given by
Helffer-Sjostrand.

25



We connect the microlocal WKB solutions over the turning points (b(E),0) and (c¢(E), 0).

Maslov theory gives the connection formula through the equation with respect to the momentum variable &.

+
+ f
L 2R
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We also connect the microlocal WKB solutions over the crossing point p4 (E).

ti fi, onT{,,
Then we obtain the coefficients tir,L and tIR of u ~

+ et +
tz,Rf2,R onl'y g,

T his
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Continuing u from I‘tL to I'}  over the turning point (a(E), 0), wegetu ~ t; p f; ponI'y |

with tl_’L — —e2tA(E)/h 4 O(h), and hence more precise Bohr-Sommerfeld quantization rule

_e2i.A(E)/h =1+ O(h)

L s
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Im E is computed from tIR via the formula for £g > c(E):

h? ’— p—— S—
—ImE = 5 Im (ulul + usus — ’rluzul) P
11122 ((— oo,01)

One sees that, for E € Dr(d0, Co) N R, [|w|Z2((_oo,ze)) = 2A'(E)Y/2 + O(h/3).

1f1_',_L hing
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Proposition 1 (Via crossing point) Let « be a microlocal solution near p_ (E') and suppose

un~tigfis onl;s(E),
foreachj = 1,2,5 = L, R. Then, for E € D} (g, Cp), one has
tir T1,1(E,h) 71 5(E,h) ti L

tar T2,1(Esh) Ty (B, h) ta,r

T11 =1+ O(h), Ty etir_hztinh 4 (’)(h%),

Ty = e~ i hz—h L O(h2), Ty 5 = 1+ O(h),

Ty = \E (TO(O)E—% + irl(O)E%) .
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2.2.3 Sketch of the proof of Proposition
(A5) implies (P — E)v ~ 0 &

( Qu, ~0, Q:=W (P, — E)\W-Y(P, — E) — 2ZWW*

vo ~ Rv;, R = —h_1W_1(P1 — E)

\

microlocally near p_ (F). Since p_ (F) is a saddle point of the principal symbol of Q:
(€2 + Vi(x) — E) (€2 + Vu(z) — E), Q is reduced to:

UF(Q,hU™ = _ (yhD +hDy) (= (y)™),

with a Fourier integral operator Uu = [, €% (®¥)/Pe(z, y; h)u(y)dy and an analytic symbol
F(t, h) (Helffer-Sjostrand).
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In our case, we have

T2 2 vE

’I,D(ZB, y) — = £ — Tyz + ry + \/ECB + O(|(£B, y)|3)9

4 E
) 7“()(0)2 + r1 (0)2E
F(0,h) = ——h + ph? = — + O(h
( ’ ) 9 l’l' 9 l’l’ 27@ ( )7
where 7y = V//(0) and 7, = —V,(0). The reduced equation for v = U is

1
E(th + hDy)v = F(0,h)v
and it has a basis of solutions
v (y) = H(y)y™", v7(y) = H(—y)|y|"™".

The problem is thus reduced to the analysis of an integral of the form

o o)

u'l (x) == Uv™ = /0 eV (@Y /he(x, y; h)y*Hdy.
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Computing the microlocal asymptotics of w' () and u7 (x) near I';, s and comparing with WKB

solutions, we obtain

( .
O‘|1_-‘z hinh f2.r on I'2 r(E);

a'i hrh f2.r on I'z (E);

BnvVh fir  on Ty r(E);

0 on I'y 1 (E),

\

where &g ~ >, 5 hkag’k (S=L,R) B~ >0 hkﬁz’k, and in particular

: 1
1yE 4 .

- . = —im/4

Oy g =OQpo = BR,O = /Tve .

ro(0) + ir1(0)VE’
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Similarly, we have

aph**" fap  on I'y r(E)
af k""" fa . on Ty (E);

0 on I'y r(E);

\ BE\/E J1,L on Fl,L(E)a

- k, . k - _ : :
where atg ~ ZkZO h%og ., Bg ~ ZkZO h*Bg 4, for S = L, R, and in particular

. 1

1y - im/4
Ay o0 = = — s By o0 = /e .
Lo RO g (0) +ir (O)VET TP
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Proposition 2 (Via turning points) For S = L, R, it holds that
with constants o1, s which behave as h — 0
o1, = —je2Sie/h O(h), O1,R = je2tS1,r/P 4 O(h),

where Sl,s are the action integrals defined by

S1.(E) = /0 VE —Vi(t)dt, S, r(E)= /Oc VE — Vi(t)dt.

Similarly it holds that
tir =021ty y
with
oo, = —ie?S2L/h L O(p),

where S2 1, are the action integrals defined by

Sy L(E) = /b " JE Vi) dt.
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Thank you for your attention.
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