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1. Nonlinear Schrodinger equation and a soliton

focusing NLS
1y + um—l—2|u\2u =0
soliton

u(x, t) :277@2153” 4(&2—n*)t+i(Yo+/2)
x sech(2nz — 8&nt — 24y)

carrier wave (exp, oscillatory) xtraveling solitary wave (sech)



2. Long-time asymptotics of soliton equations

As t — o0, the solution is asymptotically
a sum of solitons plus a small perturbation.

NLS: Fokas-Its ‘96 (IBVP), Kamuvissis ‘95 (IVP)
Toda lattice: Kriiger-Teschl ‘09 (IVP)
KdV: Tanaka ‘75 (IVP), Grunert-Teschl ‘09 (IVP)

SOLITON RESOLUTION in recent terminology

(e.g. Terence Tao's “Why are solitons stable?”, 2009)
Valid for non-integrable equations as well,

but INTEGRABLE ones are particularly important because

® they are model cases

® phase shift can be written down in the inverse scattering
parlance.



3. Integrable Discrete NLS (IDNLS) 1

NLS (focusing)
Uy + um—|—2|u\2u =0

Ablowitz-Ladik ('75)
integrable discrete nonlinear Schrodinger equation (focusing)

d
i@RnJr(RnH—QRn%—Rn_l)—i—|Rn\2(Rn+1+Rn_1) =0

Both have solitons:
carrier wave (exp, oscillatory) xtraveling solitary
wave (sech)



4. Integrable discrete NLS (IDNLS) 2

2z, eigenvalue, |z| > 1,
C1(0) norming constant
a parameter (to be explained laer)

bright soliton
BS(n, t; 21, C1(0))

= (exp carrier wave) X (sech traveling wave)

If we multiply C(0) by another constant

= PHASE SHIFT in exp and sech.
It happens when solitons collide with one another.



5. Soliton

R, (t) = BS (n,t; z1,C1(0)), soliton
2 = exp(a; + if1), a3 > 0: eigenvalue
C1(0):norming constant (at ¢t = 0)
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R, (t) = BS (n,t; z1,C1(0)), soliton
2 = exp(a; + if1), a3 > 0: eigenvalue
C1(0):norming constant (at ¢t = 0)
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5. Soliton

R, (t) = BS (n,t; z1,C1(0)), soliton
2 = exp(a; + if1), a3 > 0: eigenvalue
C1(0):norming constant (at ¢t = 0)

BS(n,t;2,C1(0)) = carrier wave X traveling wave
= exp(—i[261(n + 1) — 2wyt — arg C1(0)])
x sinh(2a )sech[2aq (n + 1) — 2u1t — 604].
v1, Wy : written in terms of aq, (1.

01.: written in terms of |C}(0)], a.

If we multiply C(0) by another number
= PHASE SHIFT in exp and sech.
It happens when solitons with different velocities collide.



6. Soliton collision and phase shift
Popular topic in Integrable systems.
A faster soliton overtakes a slower one.

Velocity and shape are preserved after overtaking.
There may be phase shift, like f(z — ct) — f(x — ct + xq).
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Multiplication of the norming constant by another constant
=>phase shift

Different constants as t — oo and t — —o0

=-phase shift due to collision

Studying phase shift is reduced to studying these constants.



6. Soliton collision and phase shift
Popular topic in Integrable systems.

A faster soliton overtakes a slower one.

Velocity and shape are preserved after overtaking.
There may be phase shift, like f(z — ct) — f(x — ct + xq).

Multiplication of the norming constant by another constant
=>phase shift

Different constants as t — oo and t — —o0

=-phase shift due to collision

Studying phase shift is reduced to studying these constants.

[ TWO GOALS|

® Soliton resolution.
Is the solution is asymptotically a sum of 1-solitons?

e Calculation of phase shift (as t — o0)



7. IDNLS and its Lax pair

d
z@Rﬁ(RnH—2Rn+Rn_1)+|Rn|2(Rn+1+Rn_1) =0 (IDNLS)

z R,

n-part : X,,11 = [R 2_1] X,

d
t-part : %Xn = [a complicated matrix] X,
(IDNLS) is the compatibility condition.

z € C\ {0} is called the spectral parameter,
Eigenvalues are its special values.




8. Eigenfunctions of the n-part

If R, — 0 (rapidly) as n — o0, then approximately
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If R, — 0 (rapidly) as n — o0, then approximately

Xni1 = [@ Z@_l] X, ‘solutions’ {ZO

At



8. Eigenfunctions of the n-part

If R, — 0 (rapidly) as n — o0, then approximately

z A . , | R
Xni1 = {@ Z@_l] X, solutions {O

There exist eigenfunctions
Gn(2),¥n(2) in 2] > 1 and ¢ (2) in |2| <1
which behave like 2" as n — +00.

3 solutions in the 2-dimensional solution space.
(There's another, but we omit it.)



9. Eigenvalues and the reflection coefficient
On |z| =1, Ja(z), b(z) = b(z,t) such that
On(2) = b(2)¥n(2) + al2)V5(2),

If la(z;) =0}, then a(—z;) = 0.

{£z;,+z; '} is called a ‘quartet of eigenvalues ‘

It corresponds to a soliton .

On |z| =1, the reflection coefficient 7(z)

S




10. Reflection coefficient

On |z| =1, the reflection coefficient 7(z) ' is

Recall: 4, ~ 27" [ﬂ , Yy~ 2" B} as n — 00.

r is characterized by

Ty + 1)) ~ const. {20} (n = —o0).

time evolution
r(z,t) = r(z)exp (it(z — 271)?), where r(2) = r(z,0).



11. Scattering data

Assume a(z;) = 0 (order 1). %z; is an eigenvalue.
Pn(25) = Fbj¢n(2;).

The norming constant | is defined by C; :== ——

Scattering Data

[{<izjv :l:’gjilv Cj) j=1 T(Z)

The potential R, is said to be if r(z) =0.

Inverse Scattering Transform
The potential R, is reconstructed from the scattering data.
Done by using a Riemann-Hilbert problem with poles.




12. Riemann-Hilbert Problem (RHP)

Boundary value problem on the complex plane

[:  curve (the left-hand side is the + side).
m(z): unknown matrix, components are holomorphic in C\ T’
Example: 1. T'=1RR, m(z) is holomorphic in £Imz > 0 .
2. I' ={|z| = 1}, m(z2) is holomorphic in |z| # 1.



12. Riemann-Hilbert Problem (RHP)

Boundary value problem on the complex plane

[:  curve (the left-hand side is the + side).
m(z): unknown matrix, components are holomorphic in C\ T’
Example: 1. T'=1RR, m(z) is holomorphic in £Imz > 0 .
2. I' ={|z| = 1}, m(z2) is holomorphic in |z| # 1.
m.y,m_: boundary values on I" from =+ sides

RHP: my =m_vonT (v: given, JUMP MATRIX)

No jump if v = I. m is analytically continued.
Normalization: m(z) — I as z — o0.
(ensures uniqueness)



13. RHPs are like integrals

RHP: m, =m_v on F‘

Deift-Zhou's nonlinear steepest descent is based on



13. RHPs are like integrals

RHP: m, =m_v on F‘

Deift-Zhou's nonlinear steepest descent is based on

e Contour deformation, introduction of a new unknown
and a new jump matrices
original RHP < new RHP.

e Continuity v — m is continuous.
(justification of perturbation analysis)

® Removing a part of the contour
1. If v =1 (no jump) on Ircr,
mloriginal] = m|with T" deleted]
2. If v~ I onT, mloriginal] ~ m|with T' deleted]



14. RHP with poles

m(z): unknown matrix, components are meromorphic in C\ .
RHP: my =m_vonT
m(z) has poles. Residue conditions imposed.



14. RHP with poles

m(z): unknown matrix, components are meromorphic in C\ .
RHP: my =m_vonT
m(z) has poles. Residue conditions imposed.

’ Inverse Scattering‘

® The jump matrix written in terms of the reflection
coefficient.

® The poles of m(z) are the eigenvalues.

® Residue conditions written in terms of the norming
constants.

The potential can be reconstructed from the solution m(z) of
the RHP.



15. ‘blowup’ of poles

Res(n();3) = lim m(2) |, wigy ) o]

Replace a pole with a circle.
Then one can use the RHPs-are-like-integrals technique.

circle C'(z;, ) In the disk D(z;,¢),

subtract the singular part of m.
New unknown m.

holomorphic at z;.

jump along C'(z;,€) instead.

If the jump matrix is close to the identity, it can be ignored.
Decrease f of poles = reduction to the 1-soliton case



16. IVP of IDNLS
— Time evolution of the scattering data —

Eigenvalues are independent of time.
C;(t) = Cj(0) exp (it(z — 2;7)?)
r(z,t) =r(z)exp (it(z — 27")?) on |z =1,

where r(z) :=r(z,0)
N J
- Initial value problem ~

R,,(0) determines the scattering data at ¢t = 0.

The scattering data in ¢ > 0 are determined.

Formulate RHP with poles (involving the scattering data).
The potential R,,(t) (t > 0) is reconstructed from the solu-
tion of the RHP.

)




17. Reflectionless Case

If |r(2) =7r(2,0) =0| R,(t) = multi-soliton.
It approaches a sum of 1-solitons as t — oc.

(formal proof in Ablowitz-Prinari-Trubatch '04)

Each term is of the form BS(n, ¢, zj, p;T(2;)2C;(0))
phase shift

Phase shift is determined by the eigenvalues:

T2 A=A
pj = szzk , T(z) = H —
- 27— 2,
k>j k>j
The j-th soliton is faster than the (j — 1)-th.




17. Reflectionless Case

If |r(2) =7r(2,0) =0| R,(t) = multi-soliton.
It approaches a sum of 1-solitons as t — oc.

(formal proof in Ablowitz-Prinari-Trubatch '04)

Each term is of the form BS(n, ¢, z;, p;T(%;)” 2C5(0 5(0))
phase shift

Phase shift is determined by the eigenvalues:

T2 A=A
pj = szzk , T(z) = H —
- 27— 2,
k>j k>j
The j-th soliton is faster than the (j — 1)-th.

Is soliton resolution valid even if r(z) Z 07
Q2| How does the reflection affect the phase shift?



18. Main results (sketched)

What happens as t — oo if there is reflection (r(z) # 0)?
Some generic assumptions (finite number of eigenvalues, ...)

SOLITON RESOLUTION
A sum of 1-solitons plus a small perturbation



18. Main results (sketched)

What happens as t — oo if there is reflection (r(z) # 0)?
Some generic assumptions (finite number of eigenvalues, ...)

SOLITON RESOLUTION
A sum of 1-solitons plus a small perturbation

A new PHASE SHIFT formula involving the REFLECTION
COEFFICIENT r(z).

|n|/t < 2 (the 'timelike' region)
There is a new factor written in terms of r(z):
BS(n, ¢, zj, New-p;T'(z;)~2C;(0))

n|/t > 2
Leading term is the same as in the reflectionless case.




19. Asymptotic Behavior: r(z) # 0

& tw is the velocity of the soliton (traveling wave).
|tw(z;)| < 2| Timelike Region: New Phase Shift Formula

Rn(t) = BS (n,t; Zj, 5(0)6(zj)_2pjT<Zj)*QCj(O))_'_O<t71/2).

d(z) determined by r(z).
pj, T(z;) determined by z;'s (k > 7).
zr's correspond to the j-th and faster solitons.



19. Asymptotic Behavior: r(z) # 0

& tw is the velocity of the soliton (traveling wave).
|tw(z;)| < 2| Timelike Region: New Phase Shift Formula

Rn(t) = BS (n,t; Zj, 5(0)6(zj)_2pjT<Zj)*QCj(O))_'_O<t71/2).

d(z) determined by r(z).
pj, T(z;) determined by z;'s (k > 7).
zr's correspond to the j-th and faster solitons.

|tw(z;)| = 2| Leading term remains the same

Ro(t) = BS (n,; 25, p,T(2)) 2C5(0)) + O(~7).

|tw(z;)| > 2| Leading term remains the same
As |n| — oo,

R, (t) = BS (n,t; 2, p;T(2;)2C;(0)) + O(n™"), V.




20. function 0(2) in the timelike region

In |n| < 2t (the timelike region),

L (V2Hnft-iy2=nft).
S = e_”/‘lA, Sy 1= €_m/4A, Sy = =951, Sy .= —95,.

allon |z] = 1.

Saddle points of the phase function to be explained later.

e (G2

§(z) is determined by the reflection coefficient.
d(z) = 1 in the reflectionless case.

(1 — 2) tlog(1 + |r(7)]?) dT)




21. RHP with poles and phase function
my(z) =m_(z)v(z) on |z| =1
L+ |r(z)* e 27 (2)
v(z) = e?Pr(z) 1

o= Lit(z— =2 _nlog:  PHASE FUNCTION!

JUMP MATRIX

\)

“Nonlinear Fourier-Laplace analysis”

Residue conditions at the poles of m(z) written in terms of
the norming constants.

Potential reconstruction R, (t) = — —m(2)a

2=0

IVP solved. Asymptotic expansion calculated.‘




22. Different behaviors in different regions. Why?

¢ = 2it(z—z7')2 —nlogz phase function

{Rep(2) =0} D {|z] = 1}. Red dots are stationary points.
In| < 2t In| =2t In| > 2t

LD 7 T8,
Ergie= S




22. Different behaviors in different regions. Why?
¢ = 2it(z—z7')2 —nlogz phase function
{Rep(2) =0} D {|z] = 1}. Red dots are stationary points.

In| < 2t In| =2t In| > 2t

4D D). D)
ol

Steepest descent paths.




Thank you very much.

® | ong-time asymptotics for the integrable discrete
nonlinear Schrodinger equation: the focusing case,
to appear in Funkcialaj Ekvacioj,
arXiv:1512.01760 [math-ph]

e (related work) Riemann-Hilbert factorization of matrices
invariant under inversion in a circle,
to appear in Proc. AMS, Volume 147, Number 5, May
2019,
arXiv:1805.12366 [math-ph]



