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1. Nonlinear Schrödinger equation and a soliton

focusing NLS

iut + uxx+2|u|2u = 0

soliton

u(x, t) =2ηe2iξx−4i(ξ2−η2)t+i(ψ0+π/2)

× sech(2ηx− 8ξηt− 2δ0)

carrier wave (exp, oscillatory)×traveling solitary wave (sech)



2. Long-time asymptotics of soliton equations

As t→∞, the solution is asymptotically
a sum of solitons plus a small perturbation.

NLS: Fokas-Its ‘96 (IBVP), Kamvissis ‘95 (IVP)
Toda lattice: Krüger-Teschl ‘09 (IVP)
KdV: Tanaka ‘75 (IVP), Grunert-Teschl ‘09 (IVP)

SOLITON RESOLUTION in recent terminology
(e.g. Terence Tao’s “Why are solitons stable?”, 2009)
Valid for non-integrable equations as well,
but INTEGRABLE ones are particularly important because

• they are model cases

• phase shift can be written down in the inverse scattering
parlance.



3. Integrable Discrete NLS (IDNLS) 1

NLS (focusing)

iut + uxx+2|u|2u = 0

Ablowitz-Ladik (’75)
integrable discrete nonlinear Schrödinger equation (focusing)

i
d

dt
Rn+(Rn+1−2Rn+Rn−1)+|Rn|2(Rn+1+Rn−1) = 0

Both have solitons:
carrier wave (exp, oscillatory)×traveling solitary
wave (sech)



4. Integrable discrete NLS (IDNLS) 2
z1 eigenvalue, |z1| > 1,
C1(0) norming constant

a parameter (to be explained laer)

bright soliton

BS(n, t; z1, C1(0))

= (exp carrier wave)× (sech traveling wave)

If we multiply C1(0) by another constant
⇒ PHASE SHIFT in exp and sech.
It happens when solitons collide with one another.



5. Soliton

Rn(t) = BS (n, t; z1, C1(0)), soliton

z1 = exp(α1 + iβ1), α1 > 0: eigenvalue

C1(0):norming constant (at t = 0)

BS(n, t; z1, C1(0)) = carrier wave× traveling wave

= exp
(
−i[2β1(n+ 1)− 2w1t− argC1(0)]

)
× sinh(2α1)sech[2α1(n+ 1)− 2v1t− θ1].

v1, w1 : written in terms of α1, β1.

θ1. : written in terms of |C1(0)|, α1.

If we multiply C1(0) by another number
⇒ PHASE SHIFT in exp and sech.
It happens when solitons with different velocities collide.
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6. Soliton collision and phase shift
Popular topic in Integrable systems.

A faster soliton overtakes a slower one.

Velocity and shape are preserved after overtaking.
There may be phase shift, like f(x− ct) 7→ f(x− ct+ x0).

Multiplication of the norming constant by another constant
⇒phase shift
Different constants as t→∞ and t→ −∞
⇒phase shift due to collision

Studying phase shift is reduced to studying these constants.

TWO GOALS

• Soliton resolution.
Is the solution is asymptotically a sum of 1-solitons?

• Calculation of phase shift (as t→∞)
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7. IDNLS and its Lax pair

i
d

dt
Rn+(Rn+1−2Rn+Rn−1)+|Rn|2(Rn+1+Rn−1) = 0 (IDNLS)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n-part : Xn+1 =

[
z Rn

Rn z−1

]
Xn

t-part :
d

dt
Xn =

[
a complicated matrix

]
Xn

(IDNLS) is the compatibility condition.
z ∈ C \ {0} is called the spectral parameter,
Eigenvalues are its special values.



8. Eigenfunctions of the n-part

If Rn → 0 (rapidly) as n→ ±∞, then approximately

Xn+1 ≈
[
z 0

0 z−1

]
Xn. ‘solutions’

[
zn

0

]
,

[
0
z−n

]
There exist eigenfunctions
φn(z), ψn(z) in |z| ≥ 1 and ψ∗n(z) in |z| ≤ 1
which behave like z±n as n→ ±∞.

3 solutions in the 2-dimensional solution space.
(There’s another, but we omit it.)
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9. Eigenvalues and the reflection coefficient

On |z| = 1, ∃a(z), b(z) = b(z, t) such that

φn(z) = b(z)ψn(z) + a(z)ψ∗n(z),

If a(zj) = 0 , then a(−zj) = 0.

{±zj,±z̄−1j } is called a quartet of eigenvalues .

It corresponds to a soliton .

On |z| = 1, the reflection coefficient r(z) is

r(z) :=
b(z)

a(z)



10. Reflection coefficient

On |z| = 1, the reflection coefficient r(z) is

r(z) :=
b(z)

a(z)

Recall: ψn ∼ z−n
[
0
1

]
, ψ∗n ∼ zn

[
1
0

]
as n→∞.

r is characterized by

rψn + ψ∗n ∼ const.

[
zn

0

]
(n→ −∞).

time evolution
r(z, t) = r(z) exp (it(z − z−1)2), where r(z) = r(z, 0).



11. Scattering data

Assume a(zj) = 0 (order 1). ±zj is an eigenvalue.
φn(zj) = ∃bjψn(zj).

The norming constant is defined by Cj :=
bj

d
dz
a(zj)

Scattering Data� �
{(±zj,±z̄j−1, Cj)}Jj=1, r(z)� �

The potential Rn is said to be reflectionless if r(z) = 0.

Inverse Scattering Transform
The potential Rn is reconstructed from the scattering data.
Done by using a Riemann-Hilbert problem with poles.



12. Riemann-Hilbert Problem (RHP)

Boundary value problem on the complex plane

Γ: curve (the left-hand side is the + side).
m(z): unknown matrix, components are holomorphic in C \ Γ

Example: 1. Γ = R, m(z) is holomorphic in ±Im z > 0 .
2. Γ = {|z| = 1}, m(z) is holomorphic in |z| 6= 1.

m+,m−: boundary values on Γ from ± sides

RHP: m+ = m−v on Γ (v : given, JUMP MATRIX)

No jump if v = I. m is analytically continued.
Normalization: m(z)→ I as z →∞.
(ensures uniqueness)
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13. RHPs are like integrals

RHP: m+ = m−v on Γ

Deift-Zhou’s nonlinear steepest descent is based on

• Contour deformation, introduction of a new unknown
and a new jump matrices

original RHP ⇔ new RHP.

• Continuity v 7→ m is continuous.
(justification of perturbation analysis)

• Removing a part of the contour

1. If v = I (no jump) on Γ̂ ⊂ Γ ,

m[original] = m[with Γ̂ deleted]

2. If v ≈ I on Γ̂, m[original] ≈ m[with Γ̂ deleted]
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14. RHP with poles

m(z): unknown matrix, components are meromorphic in C \Γ.
RHP: m+ = m−v on Γ
m(z) has poles. Residue conditions imposed.

Inverse Scattering

• The jump matrix written in terms of the reflection
coefficient.

• The poles of m(z) are the eigenvalues.

• Residue conditions written in terms of the norming
constants.

The potential can be reconstructed from the solution m(z) of
the RHP.
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15. ‘blowup’ of poles
Res(m(z); zj) = lim

z→zj
m(z)

[
0 0

z−2nj Cj(t) 0

]
.

Replace a pole with a circle.
Then one can use the RHPs-are-like-integrals technique.

In the disk D(zj, ε),

subtract the singular part of m.

New unknown m̂.

holomorphic at zj.

jump along C(zj, ε) instead.

If the jump matrix is close to the identity, it can be ignored.
Decrease ] of poles ⇒ reduction to the 1-soliton case



16. IVP of IDNLS
Time evolution of the scattering data� �

Eigenvalues are independent of time.

Cj(t) = Cj(0) exp
(
it(zj − z−1j )2

)
,

r(z, t) = r(z) exp
(
it(z − z−1)2

)
on |z| = 1,

where r(z) := r(z, 0)� �
Initial value problem� �

Rn(0) determines the scattering data at t = 0.
The scattering data in t > 0 are determined.
Formulate RHP with poles (involving the scattering data).
The potential Rn(t) (t > 0) is reconstructed from the solu-
tion of the RHP.� �



17. Reflectionless Case

If r(z) = r(z, 0) = 0 , Rn(t) = multi-soliton.

It approaches a sum of 1-solitons as t→∞.

phase shift (formal proof in Ablowitz-Prinari-Trubatch ’04)

Each term is of the form BS(n, t, zj, pjT (zj)
−2Cj(0))

phase shift
Phase shift is determined by the eigenvalues:

pj :=
∏
k>j

z2k z̄
−2
k , T (zj) :=

∏
k>j

z2k(z
2
j − z̄−2k )

z2j − z−2k
The j-th soliton is faster than the (j − 1)-th.

Q1 Is soliton resolution valid even if r(z) 6≡ 0?

Q2 How does the reflection affect the phase shift?
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18. Main results (sketched)

What happens as t→∞ if there is reflection (r(z) 6≡ 0)?
Some generic assumptions (finite number of eigenvalues, ...)

SOLITON RESOLUTION
A sum of 1-solitons plus a small perturbation

A new PHASE SHIFT formula involving the REFLECTION
COEFFICIENT r(z).

|n|/t < 2 (the ’timelike’ region)

There is a new factor written in terms of r(z):
BS(n, t, zj, New·pjT (zj)

−2Cj(0))

|n|/t ≥ 2

Leading term is the same as in the reflectionless case.



18. Main results (sketched)

What happens as t→∞ if there is reflection (r(z) 6≡ 0)?
Some generic assumptions (finite number of eigenvalues, ...)

SOLITON RESOLUTION
A sum of 1-solitons plus a small perturbation

A new PHASE SHIFT formula involving the REFLECTION
COEFFICIENT r(z).

|n|/t < 2 (the ’timelike’ region)

There is a new factor written in terms of r(z):
BS(n, t, zj, New·pjT (zj)

−2Cj(0))

|n|/t ≥ 2

Leading term is the same as in the reflectionless case.



19. Asymptotic Behavior: r(z) 6≡ 0
♣ tw is the velocity of the soliton (traveling wave).

|tw(zj)| < 2 Timelike Region: New Phase Shift Formula

Rn(t) = BS
(
n, t; zj, δ(0)δ(zj)

−2pjT (zj)
−2Cj(0)

)
+O(t−1/2).

δ(z) determined by r(z).
pj, T (zj) determined by zk’s (k ≥ j).
zk’s correspond to the j-th and faster solitons.

|tw(zj)| = 2 Leading term remains the same

Rn(t) = BS
(
n, t; zj, pjT (zj)

−2Cj(0)
)

+O(t−1/3).

|tw(zj)| > 2 Leading term remains the same

As |n| → ∞,

Rn(t) = BS
(
n, t; zj, pjT (zj)

−2Cj(0)
)

+O(n−k), ∀k.
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20. function δ(z) in the timelike region

In |n| < 2t (the timelike region),

A := 1
2

(√
2 + n/t− i

√
2− n/t

)
.

S1 := e−πi/4A, S2 := e−πi/4Ā, S3 := −S1, S4 := −S2.

all on |z| = 1.

Saddle points of the phase function to be explained later.

δ(z) := exp

(
−1

2πi

[∫ S2

S1

+

∫ S4

S3

]
(τ − z)−1 log(1 + |r(τ)|2) dτ

)

δ(z) is determined by the reflection coefficient.
δ(z) ≡ 1 in the reflectionless case.



21. RHP with poles and phase function
m+(z) = m−(z)v(z) on |z| = 1

v(z) =

[
1 + |r(z)|2 e−2ϕr̄(z)
e2ϕr(z) 1

]
JUMP MATRIX

ϕ =
1

2
it(z − z−1)2 − n log z PHASE FUNCTION!

“Nonlinear Fourier-Laplace analysis”

Residue conditions at the poles of m(z) written in terms of
the norming constants.

Potential reconstruction Rn(t) = − d

dz
m(z)21

∣∣∣∣
z=0

IVP solved. Asymptotic expansion calculated.



22. Different behaviors in different regions. Why?

ϕ = 1
2
it(z − z−1)2 − n log z phase function

{Reϕ(z) = 0} ⊃ {|z| = 1}. Red dots are stationary points.

|n| < 2t |n| = 2t |n| > 2t



22. Different behaviors in different regions. Why?
ϕ = 1

2
it(z − z−1)2 − n log z phase function

{Reϕ(z) = 0} ⊃ {|z| = 1}. Red dots are stationary points.

|n| < 2t |n| = 2t |n| > 2t

Steepest descent paths.



Thank you very much.

• Long-time asymptotics for the integrable discrete
nonlinear Schrödinger equation: the focusing case,
to appear in Funkcialaj Ekvacioj,
arXiv:1512.01760 [math-ph]

• (related work) Riemann-Hilbert factorization of matrices
invariant under inversion in a circle,
to appear in Proc. AMS, Volume 147, Number 5, May
2019,
arXiv:1805.12366 [math-ph]


