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1 Introduction

o Topological Insulators

-+ They behave as an insulator in its interior (Bulk),

but their surfaces (Egdes) contain conducting states.

= An energy Is located in the spectral gaps of a periodic
media in the whole space (Bulk), but it is an eigenvalue of
the periodic media with boundaries (Edges).
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---NER (Bulk) (E#aixia7=nKME (Edge) IF=EALK.
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Aim in English
Comparing the spectrum of the Bulk Hamiltonian H with
the spectrum of the Edge Hamiltonian H* on Graphene, we
find an energy which is an eigenvalue of H* but is not an

eigenvalue of H.

Aim in Japanese

22 7 x> _E®d Bulk Hamiltonian H & Edge Hamiltonian
HY DAY ML %S L T, Bulk Hamitonian OE&#E T34
LAY, Edge Hamiltonian DEBETH 2 LD BT RILF—H
BFHETBHIEERARS.




o Edge Hamiltonian H* in L?(Tgqg) on Graphene

Fig. 1 Graphene with zigzag boundaries.



(1) T'dge = (Epdge, VEdge)-

(2) g € L*(0,1); real-valued.

(3) For Ve € Eggqe, the Edge Hamiltonian H* in L*(Tgqge) acts
dasS

(H*y)e(x) = =y (x) + q(0)y.(x), x€(0,1) ~e,

where y € Dom(H") satisfies
(a) the Kirchhoff-Neumann vertex condition at Yv € Vg
except (zigzag) edges,
(b) the Dirichlet boundary condition on (zigzag) edges.



o Bulk Hamiltonian H in L?(I'g,x) on Graphene
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Fig. 2 Graphene without any boundary.



(1) I'suk = (EBuik, VBulk)-
(2) g € L*(0,1); real-valued.
(3) For Ve € Egyx, the Bulk Hamiltonian H in L?*(T'g,x) acts as

(Hy)e(x) = =y, (x) + q(0)ve(x), x€(0,1) ~e,

where y € Dom(H) satisfies
(a) the Kirchhoff—=Neumann vertex condition at Vv € V.



o Known Results
Notations

(1) Let op be the set of eigenvalues of the spectral problem
-y"+qy=Ay on (0,1) and y(0)=y(1)=0.

(2) Expand g to the 1-periodic function. Let 0(x, A) and
@(x, A) be the solutions to —y”" + gy = Ay In R satisfying

(0(0,A4),0'(0,A)) =(1,0) and (@(0,A),p"(0,A)) =(0,1).
(3) We put

0(1,A) +¢’'(1,7A)

0(1,A) —¢@'(1,A)
5 .
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Theorem 1.1. (P Kuchmenit—Q. Post, 2007)
() (Basic spectral structure) There exists some sequence

+ — + — + — +
< < < < <ooo< .< '<oooﬁ+w
AP < AT S AT < A5 <A AT <A

such that
0(H) = 0,c(H) U 0,(H),

where

o,(H) = 0p, 0a(H) = U B,
j=1

and B; = [/\]f_l,)\;] for each j € IN.



(i1) (Dispersion Relation) There exists a family of fiber
operators {H(u1, u2)} such that

D

dpadus
H_ - H((ull ,Uz) (2ﬂ)2 y

For each quasi-momentum (uy, i) € S* := [-m, 7t]?, the
dispersion relation for H is consisting of S* x op and the
variety

H1 — U2 H1 H2

200y — A2(1) — r e
9OA“(A) — AZ(A) =1+ 8cos 5 €OS 7= COS -

> Kuchment and Post proved these results for even

potentials. Evenness can be 5emoved as stated above.



Fig. 3 The dispersion relation for H in the unperturbed case.
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2 Main Results for H*

We put aﬁ = 0,(H") \ 0,(H) and call an eigenfunction

corresponding to A € aﬁ an edge state.

Theorem 2.1. (N, to appear in "Results in Mathematics”)
() (Basic spectral structure) We have

o(H*) = o(H) U o, = (U Bj) Uap Uk,
j=1

(i) (Existence of edge states) The energies for edge states
can be characterized as the infinite set

oh ={AeRl O(1,A)+2¢'(1,1) =0} #0.
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(ili) (Location of the eigenvalues) Let us recall
/\5<AIS/\T<)\£S/\;<~-<)\;S/\;r<---—>+oo

and B; = [/\]f_l,A]T] for each j € IN.
Putting

G; = (/\]7,/\7) and Gj= [)\]T,/\;]

for each j € N, we have

O O
op C U Gy, and aﬁ C U Goj—1.
n=1 n=1
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3 Main Results for fiber operators of H

Since H* is periodic in a, = A1 gA; 1, we obtain
® d
ot~ Ht _‘u,
; ()7~

where u € S! := [-7t, ] and H*(u) is a fiber operator
corresponding to H*.
- A € o(H%

= m({ueS oH(W)NA-—eA+e) #0}) >0 (Ve > 0).
- A€ o,(H) & m({u € S Ae€a,(H (W)} >0.
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For each quasi-momentum u € S' = [-7, ], the fiber
operator H*(u) in L2(Trage0) (S€€ Fig. 4) acts as

(HA ()Y j(X) = =¥y (%) + q()yn,j(x), x€(0,1) =T,
for a pair (n, j) of indices of an edge I';, ;.

Fig. 4 The metric graph I'egge0

14



Here, y € Dom(H"(u)) satisfies the vertex conditions

Yn1(0) = ¥n-12(1) = ¥n-13(0),  ¥,,1(0) = ¥,,_1,(1) + v, 5(0) = O,
Yu1(1) = yn2(0) = €M yus(1), =y, (D) +y,,,(0) — ey 5(1) = 0

at vertices {A,, o}u>2 and {B,, o}nen, @s well as the Dirichlet
boundary condition: y ;(x) = 0 (j = 2,3) and y1,1(0) = 0.

15



3.1 o(H*)) in the unperturbed case

For the simplicity, we here state the results on o(H*(1)) in
the case of 4 = 0. For u € (—m, ) and n € IN, we prepare

— [£+ -
B‘u,2n—1 — [ 1,2n—27 CS‘ulzn_lll ‘u2n — [5# 27—17 y2n]

and Gyn = (&) CS;,,,I), where

1 1
bu= arccos{g (1 + 2 cos g)}, Vi = arccos{— ‘Zcosg -1

;Zn 2 = ={(n—-Dm +:BM Eyzn 1= ={n-1n +7/y}

;,Zn—l = (n7t — Vu)zf Cu2n = (nm — lgu)z-

!
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Fig. 5 The dispersion relation for H* in the unperturbed case.
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Theorem 3.1. Assume thatq =0 and fix u € (-7, ).

(1) If A € op := {n*’m?| n € N}, then we have A € U]?"’:1 Gpupj
and A € a,(H*(w)) with infinite multiplicities.
(2) LetA ¢ op and A € U, B, j. Then, A € o(H*(u)).
In particular, we have A ¢ o,(H*(u)) if A € U7, B? .
If A € U2, 0B, and u # £3m, we have A ¢ o,(H*(u)).
(3) LetA ¢ op and A € U]?";O G-

(A) If cos VA # 0, then A € p(H*(1)).

(B) Ifcos VA =0 and u # +%m, then A € U2, Gy pj1 and
the following three conditions are equivalent:
()pe(-n,-3mUGr,mn), (i)Aeao,(H ),

(i) A € o(H*(u)).
18



For each n € IN, we put
_ =102 ()2
Bi= ) Bun=lz0-DF Gl
[JE(—R,R)
Theoerm 3.1 yields Theorem 2.1 in the unperturbed case:
Theorem 3.2. Assume thatq = 0. Then, we have

o(H*) =[0,00) =|| JB.|Uop U,

where op = {n*m?| n € N} and Gﬁ = {1 € R| cos VA = 0.
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3.2 o(H*u)) in the perturbed case

For u € S\ {xn} = (-7, ), we put

F(u,A) = 4cis% (9A2(/\) — A%(A) — 1 — 4 cos? g) (1)

1
\ Gp, 1 / \ GH, 3 / GH,4
40

Gu,2
[=] 10 20 (o]
Bp,[1 B, 2 B, 3 Bp,4
—1

s

Fig. 6 A graph of the discriminant F(u, A).
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The jth band B, ; and gap G, ; for j € IN are characterized

by F(u, A), as well as G, := (—o0,inf B, 1). In particular, we
have

[F(u,A)l <1 on UBW and |F(u,A)|>1 on UGW’
j=1 j=0

/\ vy=F (H,A)
1
\Gu,l / Gu,2 \ G, 3 / Gu,4
O 10 20 (s} 40
Bp,1 Bp,2 Bu,3 Bu,4
—1

N
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Theorem 3.3. Fix u € (-7, 7).

(1) If A € op, then we have A € U7, G,0j and A € a,(H* (1))
with infinite multiplicities.
(2) LetA ¢ op and A € U2 B,,;. Then, A € o(H*(u)).
In particular, we have A ¢ ap(Hﬁ(p)) ifAe Uz B .
IfA e Uz, 0B, and u # +5m, we have A ¢ aP(Hﬁ(‘u))
(3) LetA ¢ op and A € GW
(A) IfO(1,1) +2¢'(1, 1) # 0, then we have A € p(H*(u)).
(B) IfO(1,A) +2¢'(1,A) =0 and u # +3m, then
= U}'; Gupj-1 and the followmgs are equivalent:
()pe(-n,-3m) U (3n,m), (i) A€ a,(HY ),
(i) A € o(H*(u)).
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For each n € IN, we put

= () Buw Gi= () Gun

UE(—T,7) ue(—m,m)

Then, we have the statements of Theorem 2.1;
For any g € L?(0,1), we have

U(Hﬂ) = UB” Uop U aﬁ

as well as

p

GDCUGZn and Gﬁ:{)\ERl 61+2(P120}C
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An example | Let us take a step potential

¢ ifxed,),

19=1, ifxe(0,1),

\

where ¢ € IR. Then, we have

VA A—c VA . A—c . VA
6(1, ) = cos — cos — sin sin —,
2 2 - 2 2
(1 A)-cos—/\cos Aoc /\_Csin /\_Csin—A
PR =05 2 71 2 2

For c = 20, we numerically draw a picture of the dispersion

relation for H*:
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Fig. 7 The dispersion relation for H* with a step potential.
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To be continued Iin ...

Edge states of Schrodinger equations
on graphene with zigzag boundaries,
to appear in "Results in Mathematics™.

You can get this slide at the following page:
https://www.maebashi-it.ac.jp/ niikuni/slide/20210305.pdf

Thank you for your attention.
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