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Purpose

Theorem (lwaki - Koike - T.)

Voros coefficients in the exact WKB analysis are expressed as the difference
values of the free energies for spectral curves associated with the confluent
family of the Gauss hypergeometric differential equation.

Purpose of this talk

We will generalize the above result to the case of the hypergeometric
differential equations associated with 2-dimensional degenerate Garnier
systems.
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The confluence diagram

@ The family of the Gauss hypergeometric differential equations
Hermite

(1.3)
( Gauss) N K(umm<)ar / \ ,?ir)y
1,111 1,1,2 4
\‘ Bessel /
(2.2)

@ The family of the hypergeometric differential systems associated with the
2-dimensional Garnier system ([OK])

(1,1,3)
(11,1,1,1) —> (1,1,1,2) / >< /
(1,2,2)
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(1,1,3) equation

The (1,1,3) hypergeometric system (& > 0 is a small parameter) :
o3 92
2070 —— + (2x1 — 3x° )W’
{ Xp 8X13 +( x1 — 3xo ) 6X12
—(2x; — x0% —2Xg — 21 — 4}1)7@8a — 2o — 2h} Yv=0, (1)
X1
0? 0 0
{X2h8X12 — X287Xl — 8)(2} ¢ = 0,
where 5\0 = Ao — Voh and /N\l = A1 — 11h. In what follows, setting x; = x

and x; =t (fixed), we consider

dx?

3 2
{2t2h3;i3 + (2x — 3t2)h2d—
—(2x — 2 —2)g — 21 — 4h)hd% —2Xo — 2h} Yv=0. (2
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Exact WKB analysis
0e00

Exact WKB analysis, |

Let us consider the following differential equation with a small parameter 7

d a3 d? d
P (xn ) o= [ 5+ pa2 Sy + a0 =0
(3)
and its WKB solutions
Blx, B) = exp ( JESY dx) | (4)
where
S(x,h) = h1S 1 (x) + So(x) + hSi(x) + - = > HSi(x) (5
jz-1
is a solution of
d? d
po(x)I® ( == S(x, ) + 35(x, h)—-S(x, 1) + S(x, h)?
(dx d ) (6)

+ p1(x)h? <:Z<S(x, h) + S(x, h)2> + fipa(x)S(x, h) + ps(x) = 0.
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Exact WKB analysis
coeo

Exact WKB analysis, |l

By substituting (5) into (6) and comparing like powers of both sides with
respect to A, we obtain

Po(x)S2 1 + p1(x)S21 + p2(x)S—1 + p3(x) = 0 (7)
and
m—1
(3po(x)S=1 + 2p1(x)S—1 + p2(x)) Sm1 + Z 5iS5iSc+3 Z Sm—j-15;
itjtk=m—1 =0
ij,k>0
dS_l dSm d25m—1 .
+3po(X)Sm b 3P0(X)5—1K + po(x) a2 T pi(x) jz:; Sm—jS;
dS,,
(8)

Eq. (7) has three solutions, and once we fix one of them, we can determine S, for
m > 0 uniquely and recursively by (8).
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Exact WKB analysis
ocooe

Voros coefficients

Then, the Voros coefficient is defined by

o / S(x, h)dx
= /7 (S(x,h) — 715 1(x) — n;ﬁ"’ / Sm(x)dx

where v is a path from a singular point to a singular point.

(9)

Remark: The Voros coefficient is an important ingredient to describe the
global behavior of Borel resummed WKB solutions (4).
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Topological recursion
0@0000

Spectral curve

d® d? d
233 2\ 2 2
2t°h 7dX3 + (2X — 3t )h sz — {2X —t° - 2(/\0 — I/oh) — 2()\1 — Vlh) — 4h}h7dx

—2{(No — voh) + n}]¢ =0. : The (1,1,3) equation
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Topological recursion
0@0000

Spectral curve

d3 d? d
23 2\ 2 2
|:2t h ﬁ + (2X — 3t )h @ - {2X -t — Q(Ao - I/oh) - 2()\1 - Vlh) - 4h}h&
—2{(No — voh) + h}]¢ =0. : The (1,1,3) equation
lhjx —y, h—0

P(x,y) = 2t%y° +(2x—=3t%)y? — (2x— > —2Xg—2)\1 )y —2Xo = 0. (10)
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Topological recursion
0@0000

Spectral curve

d® d? d
233 2\ 2 2
|:2t h 7dX3 + (2X — 3t )h sz — {2X —t° - 2(/\0 — I/Qh) — 2()\1 — Vlh) — 4h}h7dx

—2{(No — voh) + n}]¢ =0. : The (1,1,3) equation
Let us consider the following algebraic curve
P(x,y) = 2t2y3 +(2x—3t%)y? — (2x— > —2Xg—2)\1 )y —2Xo = 0. (10)

For z € P! we choose

—2t223 4+ 3t222 — (t2 + 2Xo + 2A\1)z + 2)o
22(z—1) To(11)

x=x(z) =
y=y(z) =z

We call a pair (x(z),y(z)) a spectral curve.
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Topological recursion
008000

Topological recursion (cf. [EO1])

Let (x(z),y(z)) be a spectral curve. We first define

dx dz; dz
Wo1(z) = y(z)a(z)dz, Wo2(z1,22) = B(z1,22) = 2
Forg =0, n20and 2g — 2+ n = 0, we construct meromorphic differentials
We.n(z1,...,2,) on (P')" by the following recursive formulas.

(53) dzo
Woni(zorzi oz = 3 Res oz
a : branch point z=a (Y(z) ( )) dX(Z)

(12)
X Wg—l,n+2(za2,zl7"'a Z g1, 1+\I| z zl)Wg2,1+|J\(szJ)
g1+82=,
WS {L 2,0 n)
@ Branch points are zeros of dx(z) (assume that all branch points are simple);
@ Z is a local conjugate point of z near a branch point (i.e. x(Z) = x(2));
® z :(Z,'l,...,Z,',) for | = {I.]_7...,I.,—} - {1,...,”}.
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Topological recursion
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Free energy (cf. [CEQ])

We define F; = W, g, called free energies, by the following ([EO1], [CEO]):

o= Y Reso@Wal) (22, (13

a : branch point

where ®(z) is any function satisfying 22 (z) = y(z) %(z).

Remark: The free energies Fg and F; for g = 0 and 1 are also defined, but
in a different manner.
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Topological recursion
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Variational formula (cf. [EO2])

From the variational formula, Wy n(z1, ..., z,) and F, satisfy
oW,
g (z1y...,2z0) = Went1(z1,...,20,¢) (2g+n>2), (14)
OA; Ceni
OF,
s [ w0 g2, (15)
! CEi
OFg 5
T = Res (- 2) Wpale) (52 1) (16)

where g is a path from co to 0 and 3 is a path from oo to 1.
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Topological recursion
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Theorem 1 (cf. [BE])

For P(x,y) = 2t2y3 + (2x — 3t2)y? — (2x — t2 — 29 — 2)\1)y — 2\¢ = 0, we define

+ih{ > e /W<)}H

2g+n—2=m
g20,n>1

(17)

z=2z(x)

where z = z(x) is an inverse function of x = x(z) and

/:I/o/ +V1/ -I—(l—l/o—l/l)/.
D 0 1 oo

Then, 1(x, k) is a WKB solution of

2t2h3d3+(2 3t2h2d2 2x — 12 — 250 — 2% — ah)h-L — 23 —2h b =0
3 x = 3t°)h"—— — (2x — t7 =200 — 2\ — )a— 0— ¥ =0,

dx?
) i (18)
where )\0 = )\0 — Voh and )\1 = )\1 — Vlﬁ.
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Main results
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Theorem 2 (for the quantum (1,1,3) curve)

Let Fg(Xo, A1, t) be free energies for the (1,1,3) curve and

F(Xos Aty t,1) =D Fg(o, Ar, £)h%6 2
g=0

be the generating function of Fz(Ao, A1, t). Then, we obtain

. . © < OFy , _ D*F; 2u0—1 0°F

(0 _ BY_F . _ 901 0 0 0
()\O—Fh, A1, t; L) ()\07A1, t,h) 78)\0 1 T+ WO > 8)\027
o < S OFy , _ D*F; 2u1—1 9*F

vl _ B —F . _Oro,1 0 1 0
()\07)\1+ha txh) ()\07)\17t|h) aAlh +V08)\08A1 2 6)\127

where V(%) (\g, A1, t, 10,1, h) (i = 0,1) is the Voros coefficient for the (1,1,3)
hypergeometric differential equation whose path is from oo, to oo;.
Here x(0) = oog, x(1) = 001, x(00) = c03.

X(2) = —2t%23 + 31222 — (t2 4+ 2\ + 2A\1)z + 2o
a 2z(z—-1)
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Main results
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Sketch of Proof of Theorem 2, |

From Theorem 1, we can express 9(x, i) in terms of W, , as follows:

a0 [ 3 [ [ o Z{ 5 S et H

2g+n—2=m
£>0,n>1

00
Ve = / (S 1) = B'S-a(x) = So(x))
0
" o) 2; nl dz/ /D(z) ng”(Zh” '7Zn)} dz

o 5 H{(of ) (o) L) o
(yn [ [ [ 1)

where we use the notation (fv) W, = fclew fcnew We.n(C1, -5 Cn)-
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Main results
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Sketch of Proof of Theorem 2, |l

V(.0 _ ihm Z {Z{ —1p)k —ki(;foz)l} (—r1)"—k {/A;/O}k {/n.ﬂ}nfk Wgﬁn]

m=1 2g+n—2=m
£>0,n>1

G —(1- "k 9F,
e A foe e ]
m=1  2g+n—2=m Lk=1 n 0" OA1

£>0,n>1

k=1

° —v0)k — (1 — o)k} (=)= K on _ n
= — |:Z () /E!(n_OZ)!}( ) ANokOA K {Zth 2Fg(/\o,)\1)}h:|

g>0

F 2 F 2uy — 1 02 F
780h_1+ 30+V0 0°Fy

o M NN 2 0n?
. - I OFy, 4 9%Fy 2u0—1 0%Fy
=F (Xo+h, A, t;h)—F (Xo, M, t;5) — =—h ,
( 0t AL, ) ( 0> ) 2 T a0 2 A2
where we use the variational formula
ow,
g"( Zly...y2Zn) = We nti(zi, .. -,20,() (28 +n>2), (19)
CEni
OF,
£ = Weai(¢) (g2>1). (20)
OAi CEYi
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Main results
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Explicit form of free energies (for the (1,1,3) curve), |

From Theorem 2 we obtain
0% Fy

F(Xo + Ry A1, th) — 2F(Xo, A, t h) + F(Ao — By Aq, t h) = e (21)
F(Xo, A1+ R, t: 1) — 2F(Xo, A1, £ B) + F(Ao, Ay — i, t; 1) = gi\Fg 22)
1
(21) is rewritten as
(e 2o P ey = 1 () = O
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Explicit form of free energies (for the (1,1,3) curve), |

From Theorem 2 we obtain
0% Fy

F(Xo+ B, A1, t; ) — 2F (X, A1, t; B) + F(Ao — By Aq, £ h) = > (21)
0
0%F,
F(>\0,>\1 + A, t; h) — 2F()\0, A1, t; h) + F()\o,>\1 —h, t; h) = o 5 (22)
1
(21) is rewritten as
o _282F0
j— 0>\ ANy —
F(\ t,h) =¢€"% (e 0 1) v
e” 1 S Bag 262
s _ = _ 2
(ev —1)2 w2 g; 2g(2g — 2)!
_ > B> _ _
F = Fo(\, t)h2+Fi(\ t B\ G\, t h28=2,
o, 2R, )+;{2g(2g—2) 2EE G
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ey - +G(t) o
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Explicit form of free energies (for the (1,1,3) curve), Il

From variational formula we obtain
OF,
7af = —Res (22 — 2) Wza(2) (g>1). (23)

On the other hand, by substituting vg = v; = 0 in (17), we get

oS} x(z} oo z z
th/ Smdx= > H"¢ > %// Wen(z,.. 2) 0y (24)

m=—1 m=—1 2g+n—2=m
g20,n>1
o0

Zfi%%(zZ —2) Z R Sm(x(2))dx(z)

m=-—1

= Res(2? — 2) Z R W, 1(2) + Zfi?g(zz — z)/ Wo.2(z, z2)

Z=0Q
g>0

Res(z% — i S ZW 25
+ Res(z° — 2) Z —9)i en(2,20,...,2,). (25)

Z=00 (f'l
£>0,n>2
(g,m)#(0,2)
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Explicit form of free energies (for the (1,1,3) curve), Il

From variational formula we obtain
OF,
ajg = — Res (2 —2) Wpa(2) (g>1). (23)

On the other hand, by substituting vg = v; = 0 in (17), we get

oS} x(z} oo z z
th/ Smdx= > H"¢ > %// Wen(z,.. 2) 0y (24)

m=—1 m=—1 2g+n—2=m
g20,n>1
o0

Zfi%%(zZ —2) Z R Sm(x(2))dx(z)

m=-—1

V4
= Res(22 — 2) Y W, 1 (2) + Res(2 - 2) / Woor(2, 22)
g>0

Res (22 - P [, 25
+ es(z Z) Z (n_l)l g,n(zsza"'7zn)' ( )

Z=00
g2>0,n>2 >
(g,1)#(0,2)

0F, G
—_ = — = > . — = U.
ot ot (e=1) 6(t)=0 21/25
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Explicit form of the Voros coeff. (for the (1,1,3) equation)

Using the explicit form of the free energy
B, 1 1
Fe(Xo, A1) = £ >2 2
o)=L ) @2 @

and Theorem 2, we get the explicit forms of the Voros coefficients of the (1,1,3)
hypergeometric differential equation.

Explicit forms of the Voros coefficients (for the (1,1,3) equation)

(0,0) UB) — = Bm(vo) (h\™
Vo enn =3 s (5) 0
e} m—1
VDRt h) =) m?;(il)l) (i) ’ &)

where B,(X) designates the m-th Bernoulli polynomial defined by

weXW > Bn(X)
e""—l_mz::0 m

L €
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Summary

For the (1,4) HG equation, the (2,3) HG equation and the (1,1,3) equation,
we obtain the following results:
@ Voros coefficients are expressed as the difference values of the
generating function of the free energies with respect to parameters.
— It means that the Voros coefficients are controlled by the free
energy, in other words, the free energy is more essential quantity.

@ As its applications, we get the explicit forms of the Voros coefficients
and free energies.
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Summary

For the (1,4) HG equation, the (2,3) HG equation and the (1,1,3) equation,
we obtain the following results:

@ Voros coefficients are expressed as the difference values of the
generating function of the free energies with respect to parameters.
— It means that the Voros coefficients are controlled by the free
energy, in other words, the free energy is more essential quantity.

@ As its applications, we get the explicit forms of the Voros coefficients
and free energies.

Thank you for your attention !
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