Proof of main theorem

Propagation of singularities for Schrödinger equations on manifolds with ends

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

Himeji conference on Partial Differential Equations March 2–4, 2022

Shota Fukushima (D3)

ব া চ ব লি চ ব ট চ ব ট চ ট ল Graduate School of Mathematical Science, the University of Tokyo

Radially homogeneous wavefront sets 000000000 Pseudodifferential calculus

Proof of main theorem

Contents

Shota Fukushima (D3)

- 2 Radially homogeneous wavefront sets
- 3 Pseudodifferential calculus
- 4 Proof of main theorem

Graduate School of Mathematical Science, the University of Tokyo

▲ 同 ▶ → 三

Pseudodifferential calculus

Proof of main theorem

Homogeneous wavefront sets (HWF)

Definition 1

For $u \in L^2(\mathbb{R}^n)$, we define a homogeneous wavefront set $\operatorname{HWF}(u) \subset T^*\mathbb{R}^n \setminus \{(0,0)\}$ as follows: a point $(x_0,\xi_0) \in T^*\mathbb{R}^n \setminus \{(0,0)\}$ is *not* in $\operatorname{HWF}(u)$ if there exists a symbol $a \in C_c^{\infty}(T^*\mathbb{R}^n)$ such that

•
$$a = 1$$
 near (x_0, ξ_0) ,

$$||a^{\mathbf{w}}(\hbar x, \hbar D)u||_{L^2} = O(\hbar^{\infty}).$$

Here $a^{w}(\hbar x, \hbar D)$ is defined as

$$a^{\mathsf{w}}(\hbar x, \hbar D)u(x) := \frac{1}{(2\pi)^n} \int_{T^* \mathbb{R}^n} a\left(\frac{\hbar x + \hbar y}{2}, \hbar \xi\right) e^{i\xi \cdot (x-y)} u(y) \, dy d\xi.$$

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

A (1) > A (2) >

Pseudodifferential calculus

Proof of main theorem

Theorem 2 (Nakamura (2005))

Let H be a Hamiltonian of the form

$$H := -\frac{1}{2} \sum_{j,k=1}^{n} \partial_{x_j}(a_{jk}(x)\partial_{x_k}) + V(x)$$

with

$$|\partial_x^{\alpha}(a_{jk}(x) - \delta_{jk})| \le C_{\alpha} \langle x \rangle^{-\mu - |\alpha|} \ (\exists \mu > 0),$$

$$|\partial_x^{\alpha} V(x)| \le C_{\alpha} \langle x \rangle^{\nu - |\alpha|} \ (\exists \nu < 2).$$

Let $(x(t), \xi(t))$ be a nontrapping classical orbit with respect to the Hamiltonian $h_0 := \sum_{j,k=1}^n a_{jk}(x)\xi_j\xi_k/2$ and let $\xi_\infty := \lim_{t\to\infty} \xi(t)$. Then, for any $t_0 > 0$ and $u \in L^2(\mathbb{R}^n)$,

$$(x(0),\xi(0)) \in WF(u) \Longrightarrow (t_0\xi_{\infty},\xi_{\infty}) \in HWF(e^{-it_0H}u).$$

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

Proof of main theorem

HWF on manifolds?

On manifolds: " $\hbar x$ "??? Instead of $\hbar x$, we want to consider polar coordinates (r, θ) and replace $\hbar x$ to $(\hbar r, \theta)$. \implies We want to describe the regularity such as

$$a^{\mathrm{w}}(\hbar r, \theta, \hbar D_r, \hbar D_{\theta})u = O_{L^2}(\hbar^{\infty}).$$

 \iff radially homogeneous wavefront sets (Ito-Nakamura (Amer. J. Math., 2009)).

Remark

The (complement of) HWF is described as a^w(ħr, θ, ħD_r, ħ²D_θ)u = O_{L²}(ħ[∞]).
For x ≠ 0, (x, ξ) ∈ WF^{rh}(u) ⇒ (x, (ξ ⋅ x̂)x̂) ∈ HWF(u) where x̂ := x/|x|.

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

Proof of main theorem 00000000

Manifolds with ends

Let ${\cal M}$ be an n-dimensional non-compact manifold.

Assumption 1

There exist

- an open subset E of M,
- $\hfill an (n-1)\mbox{-dimensional compact manifold }S$ and
- a diffeomorphism $\Psi: E \to \mathbb{R}_+ \times S$

such that the set $M \setminus \Psi^{-1}((1,\infty))$ is a compact subset of M. Here $\mathbb{R}_+ := (0,\infty)$.

The set E is called the end of M.

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

イロト イヨト イヨト

Radially homogeneous wavefront sets

Pseudodifferential calculus

Proof of main theorem

Intrinsic L^2 space

Let $C_c^{\infty}(M;\Omega^{1/2})$ be the space of compactly supported smooth half-densities on M. Then we introduce an inner product on $C_c^{\infty}(M;\Omega^{1/2})$ defined as

$$\langle u,v\rangle := \int_M \tilde{u}(x)\overline{\tilde{v}(x)}\,dx$$

where $u = \tilde{u}|dx|^{1/2}$ and $v = \tilde{v}|dx|^{1/2}$ locally. The intrinsic L^2 space $L^2(M; \Omega^{1/2})$ is defined as the completion of $C_c^{\infty}(M; \Omega^{1/2})$ by the inner product $\langle \cdot, \cdot \rangle$.

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

A (1) > A (2) > A

Radially homogeneous wavefront sets

Pseudodifferential calculus

Proof of main theorem

Hamiltonian

We consider a Hamiltonian

$$H = -\frac{1}{2} \triangle_g + V(x)$$

where

- $\blacksquare \ \bigtriangleup_g$ is the associated Laplacian with respect to a fixed metric g on M,
- $V \in C^{\infty}(M; \mathbb{R})$ is a potential function.

 $riangle_g$ acts on half-density $u = ilde{u} |\mathrm{vol}_g(x)|^{1/2}$ as

$$\triangle_g(\tilde{u}|\mathrm{vol}_g(x)|^{1/2}) := (\triangle_g \tilde{u})|\mathrm{vol}_g(x)|^{1/2}.$$

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

A (1) > A (2) > A

Radially homogeneous wavefront sets

Pseudodifferential calculus

Proof of main theorem

Metric

Assumption 2

The metric g is the form

$$\Psi_*g(r,\theta,dr,d\theta) = c(r,\theta)^2 dr^2 + h(r,\theta,d\theta)$$

where $c(r,\theta) > 0$ and $h(r,\theta,d\theta)$ is a r-dependent metric on S.

• $C^{-1}f(r)^2h(1,\theta,d\theta) \le h(r,\theta,d\theta) \le Cf(r)^2h(1,\theta,d\theta)$ for some constant C > 0 and a smooth function $f : \mathbb{R} \to \mathbb{R}_+$ with

$$c_0 r^{-1} \le f'(r) / f(r) \le C \quad (r \ge 1)$$

for some $c_0 > 1/2$.

Shota Fukushima (D3)

ৰ □ ▷ ব বি ▷ ব ছি ▷ ব ছি ▷ ব ছি ০ ৭ Graduate School of Mathematical Science, the University of Tokyo

Radially homogeneous wavefront sets

Pseudodifferential calculus

Proof of main theorem 00000000

Metric

Assumption 2 (continued)

• For all multiindices $\alpha = (\alpha_0, \alpha') \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}^{n-1}$, the estimates

$$\begin{aligned} |\partial_r^{\alpha_0} \partial_{\theta}^{\alpha'}(c(r,\theta) - 1)| &\leq C_{\alpha} r^{-1-\mu}, \\ \left| \sum_{j,k=1}^{n-1} \partial_r^{\alpha_0} \partial_{\theta}^{\alpha'} h_{jk}(r,\theta) w_j w_k \right| &\leq C_{\alpha} h(r,\theta,w) \quad (\forall w \in T_{\theta}S), \\ |\partial_r^{\alpha_0} \partial_{\theta}^{\alpha'} V(r,\theta)| &\leq C_{\alpha}. \end{aligned}$$

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

< ロ > < 回 > < 回 > < 回 > < 回 >

Pseudodifferential calculus

Proof of main theorem

Classical free Hamiltonian

 $\label{eq:generalized} \bullet \ (\rho,\eta) \in T^*_{(r,\theta)}M \text{: dual variable of } (r,\theta).$ The classical free Hamiltonian is

$$h_0(r,\theta,\rho,\eta) = \frac{1}{2} \left(c(r,\theta)^{-2} \rho^2 + h^*(r,\theta,\eta) \right).$$

Here $h^*(r, \theta, \eta)$ is the dual metric

$$h^*(r,\theta,\eta) := \sum_{j,k=1}^{n-1} h^{jk}(r,\theta)\eta_j\eta_k$$

where $h^{jk}(r,\theta)$ is the inverse matrix of $(h_{jk}(r,\theta))_{j,k=1}^{n-1}$ defined as

$$h(r,\theta,d\theta) = \sum_{j,k=1}^{n-1} h_{jk}(r,\theta) d\theta_j d\theta_k.$$

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

Pseudodifferential calculus

Proof of main theorem

Classical analogue of Mourre estimate

Assumption 3

$$\{f\rho, h_0\} \ge 2f'(r)(h_0 - Cr^{-1-\mu})$$

holds for all $(r, \theta, \rho, \eta) \in T^*E \cap \{r \ge 1\}.$

Theorem 3

Let $(r(t), \theta(t), \rho(t), \eta(t))$ be a nontrapping $(r(t) \to \infty \text{ as } t \to \infty)$ classical orbit with respect to the Hamiltonian h_0 . Then, under Assumption 1–3,

$$\exists (\rho_{\infty}, \theta_{\infty}, \eta_{\infty}) := \lim_{t \to \infty} (\rho(t), \theta(t), \eta(t)) \in \mathbb{R}_{+} \times T^{*}S.$$

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

Pseudodifferential calculus

Proof of main theorem

Radially homogeneous wavefront sets

Definition 4

For $u \in L^2(M; \Omega^{1/2})$, we define a radially homogeneous wavefront set $\operatorname{WF}^{\operatorname{rh}}(u) \subset T^*E$ as follows: a point $(x_0, \xi_0) \in T^*E$ does not in $\operatorname{WF}^{\operatorname{rh}}(u)$ if there exist $a \in C_c^{\infty}(T^*\mathbb{R}^n)$, $\chi \in C^{\infty}(M)$ and a polar coordinate function $\varphi: U(\subset E) \to V = \mathbb{R}_+ \times V'(\subset \mathbb{R}_+ \times S)$ near x_0 such that • $\operatorname{supp} a \subset \tilde{\varphi}(T^*E)$ and a = 1 near $\tilde{\varphi}(x_0, \xi_0)$, • $\chi(r, \theta) = \exists \chi_{\operatorname{ang}}(\theta)$ for $r \gg 1$, $\operatorname{supp} \chi \subset U$, and $\chi = 1$ near $\Psi^{-1}([R, \infty) \times \{\theta_\infty\})$ for some R > 0,

$$\|\chi\varphi^*a^{\mathsf{w}}(\hbar r,\theta,\hbar D_r,\hbar D_\theta)\varphi_*(\chi u)\|_{L^2} = O(\hbar^\infty).$$

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

Radially homogeneous wavefront sets

Pseudodifferential calculus

Proof of main theorem

Main theorem

Theorem 5 (F, arXiv:2201.09466 [math.AP])

Suppose Assumption 1–3. Let $u \in L^2(M; \Omega^{1/2})$ and $(x(t), \xi(t)) = \Psi^{-1}(r(t), \theta(t), \rho(t), \eta(t))$ is a nontrapping classical orbit. Then, for any $t_0 > 0$, $(x(0), \xi(0)) \in WF(u)$ implies $\Psi^{-1}(\rho_{\infty}t_0, \theta_{\infty}, \rho_{\infty}, \eta_{\infty}) \in WF^{\mathrm{rh}}(e^{-it_0H}u).$

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

- 4 同 ト 4 三 ト 4 三

Radially homogeneous wavefront sets

Pseudodifferential calculus •0000 Proof of main theorem

Symbol class

Definition 6

For $m\in\mathbb{R},$ we define a symbol class $S^m_{\rm cyl}(T^*M)\subset C^\infty(T^*M)$ as follows:

For polar coordinates (r, θ) , the estimate

 $|\partial_r^{\alpha_0}\partial_{\theta}^{\alpha'}\partial_{\rho}^{\beta_0}\partial_{\eta}^{\beta'}a(r,\theta,\rho,\eta)| \le C_{\alpha\beta}(1+|\rho|+|\eta|)^{m-|\beta|}$

holds for all multiindices $\alpha = (\alpha_0, \alpha')$, $\beta = (\beta_0, \beta') \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}^{n-1}$.

The conditions of usual Kohn-Nirenberg symbols are satisfied on $M \setminus E$.

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

イロト イヨト イヨト イヨ

Proof of main theorem

Quantization

We fix

- \blacksquare a finite atlas $\{\varphi_\iota: U_\iota \to V_\iota\}_{\iota \in I}$,
- a partition of unity $\{\kappa_{\iota} \in C^{\infty}(M)\}_{\iota \in I}$ subordinate to the atlas,
- a family of functions $\{\chi_{\iota} \in C^{\infty}(M)\}_{\iota \in I}$ such that $\operatorname{supp} \chi_{\iota} \subset U_{\iota}$ and $\chi_{\iota} = 1$ near $\operatorname{supp} \kappa_{\iota}$,

and define

$$\operatorname{Op}_{\hbar}(a)u := \sum_{\iota \in I} \chi_{\iota} \varphi_{\iota}^{*} (\tilde{\varphi}_{\iota*}a)^{\mathsf{w}}(x, \hbar D) \varphi_{*}(\chi_{\iota}u)$$

for
$$a \in S^m_{\mathrm{cyl}}(T^*M)$$
 and $u \in C^\infty_c(M; \Omega^{1/2})$.

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

< □ > < 同 > < 回 > < Ξ > < Ξ

Quantization

The index set I is decomposed into $I = I_K \cup I_\infty$:

- $\{U_{\iota}\}_{\iota \in I_{K}}$ covers $M \setminus E$ and $\kappa_{\iota}, \chi_{\iota} \in C^{\infty}_{c}(U_{\iota})$, and
- $\{U_{\iota}\}_{\iota \in I_{\infty}}$ is a family of polar coordinates on E and $\kappa_{\iota}, \chi_{\iota} \in C^{\infty}(U_{\iota})$ depend only on θ near infinity.

Basic properties as in the usual pseudodifferential operators hold:

• Calderón-Vaillancourt theorem: $\|\operatorname{Op}_{\hbar}(a)\|_{L^2 \to L^2} \leq C \sum_{|\alpha| \leq N} |\partial^{\alpha} a|$ for $a \in S^0_{\operatorname{cyl}}(T^*M)$.

Sharp Gårding inequality:

 $\begin{array}{l} \operatorname{Re} \operatorname{Op}_{\hbar}(a) \geq -\operatorname{Op}_{\hbar}(b) + O_{L^2 \rightarrow L^2}(\hbar^{\infty}) \text{ for any} \\ a \in S^0_{\operatorname{cyl}}(T^*M) \text{ with } \operatorname{Re} a \geq 0 \text{ and some } b \in S^0_{\operatorname{cyl}}(T^*M) \text{ with} \\ \operatorname{supp} b \subset \operatorname{supp} a \text{ modulo } O(\hbar^{\infty}). \end{array}$

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

イロト イヨト イヨト イヨ

Radially homogeneous wavefront sets 000000000 Pseudodifferential calculus

Proof of main theorem

Quantization

• Composition: For $a \in S^{m_1}_{\mathrm{cyl}}(T^*M)$ and $b \in S^{m_2}_{\mathrm{cyl}}(T^*M)$,

$$Op_{\hbar}(a) Op_{\hbar}(b) = Op_{\hbar}(c) + O_{L^2 \to L^2}(\hbar^{\infty}),$$

$$[Op_{\hbar}(a), Op_{\hbar}(b)] = i\hbar Op_{\hbar}(c') + O_{L^2 \to L^2}(\hbar^{\infty})$$

for some
$$c = ab + O_{S_{\text{cyl}}^{m_1+m_2-1}(T^*M)}(\hbar)$$
 and
 $c' = \{a, b\} + O_{S_{\text{cyl}}^{m_1+m_2-2}(T^*M)}(\hbar)$ with
 $\operatorname{supp} c, \operatorname{supp} c' \subset \operatorname{supp}(ab)$ modulo $O(\hbar^{\infty})$.

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

Pseudodifferential calculus

Proof of main theorem

Remark: Ψ DOs acting on half-densities

Remark

On Euclidean spaces.

$$a^{w}(x,\hbar D)(\tilde{u}|dx|^{1/2}) := (a^{w}(x,\hbar D)\tilde{u})|dx|^{1/2}$$

On curved spaces. Let g be a general metric on \mathbb{R}^n and $g(x) := \det(g_{jk}(x))$. Then, noting that the natural identification $\tilde{u}|g^{1/2}dx|^{1/2} \simeq \tilde{u}$, we have

$$u^{\mathbf{w}}(x,\hbar D)(\tilde{u}|g^{1/2}dx|^{1/2}) = g^{-1/4}a^{\mathbf{w}}(x,\hbar D)(\tilde{u}g^{1/4})|g^{1/2}dx|^{1/2}.$$

Shota Fukushima (D3)

ৰ □ ▷ ব বি ▷ ব ছি ▷ ব ছি ▷ ব ছি ০ ৭ Graduate School of Mathematical Science, the University of Tokyo

Proof of main theorem

Construction of symbols

We follow the argument in Ito-Nakamura (Amer. J. Math., 2009). Take $\chi \in C_c^{\infty}(\mathbb{R} \text{ with } \chi = 1 \text{ in } [-1,1] \text{ and } \chi = 0 \text{ outside } [-2,2].$ For $j = 0, 1, 2, \ldots$, we consider

$$\begin{split} \tilde{\psi}_{j}(t,r,\theta,\rho,\eta) &:= \chi \left(\frac{|r-r(t)|}{4\delta_{j}t} \right) \chi \left(\frac{|\theta-\theta(t)|}{\delta_{j}-t^{-\lambda}} \right) \\ &\times \chi \left(\frac{|\rho-\rho(t)|}{\delta_{j}-t^{-\lambda}} \right) \chi \left(\frac{|\eta-\eta(t)|}{\delta_{j}-t^{-\lambda}} \right) \end{split}$$

for $t \ge T (\gg 1)$. $\delta_j > 0$ and $\lambda > 0$ are chosen appropriately.

Shota Fukushima (D3)

ব া চ ব লি চ ব ট চ ব ট চ ট ল Graduate School of Mathematical Science, the University of Tokyo

Pseudodifferential calculus

Proof of main theorem

Construction of symbols

Take a function $\alpha \in C^{\infty}(\mathbb{R})$ with $\alpha = 0$ in $(-\infty, T)$ and $\alpha = 1$ in $(T+1,\infty)$, and we "extend" $\tilde{\psi}_j(t,\ldots)$ $(t \ge T)$ to $\psi_j(t,\ldots)$ $(t \ge 0)$ by the transport equation

$$\frac{\partial \psi_j}{\partial t} + \{\psi_j, h_0\} = \alpha(t) \left(\frac{\partial \tilde{\psi}_j}{\partial t} + \{\tilde{\psi}_j, h_0\} \right),$$
$$\psi_j(T+1, r, \theta, \rho, \eta) = \tilde{\psi}_j(T+1, r, \theta, \rho, \eta).$$

Lemma 7

$$\psi_j$$
 belongs to $S_{\text{cyl}}^{-2}(T^*M)$ and satisfies
 $\frac{\partial \psi_j}{\partial t} + \{\psi_j, h_0\} \ge 0, \quad \frac{\partial \psi_j}{\partial t} + \{\psi_j, h_0\} = O_{S_{\text{cyl}}^0(T^*M)}(\langle t \rangle^{-1}).$

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

Pseudodifferential calculus

Proof of main theorem

Construction of symbols

We define a symbol of the form

$$\tilde{a}(\hbar; t, x, \xi) \sim t \sum_{j=1}^{\infty} c_j \hbar^j \psi_j(t, x, \xi)$$

where c_j 's are positive constants, and consider

$$A_{\hbar}(t) := \operatorname{Op}_{\hbar}(\psi_0(\hbar^{-1}t))^* \operatorname{Op}_{\hbar}(\psi_0(\hbar^{-1}t)) + \operatorname{Op}_{\hbar}(\tilde{a}(\hbar; \hbar^{-1}t)).$$

we set

$$F_k(t) := \operatorname{Op}_{\hbar}(\psi_0(t))^* \operatorname{Op}_{\hbar}(\psi_0(t)) + t \sum_{j=1}^k c_j \hbar^j \psi_j(t, x, \xi).$$

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

Proof of main theorem

Heisenberg derivatives

Note that $H = \hbar^{-2}(\operatorname{Op}_{\hbar}(h_0) + \hbar^2 V + \hbar^2 V_g/2)$ for some $V_g(r, \theta) \in S^0_{\text{cyl}}(T^*M)$. We apply the sharp Gårding inequality for $F_0(t)$ and obtain:

Lemma 8

There exists a symbol $b_0(\hbar; t, x, \xi) \in S^0_{cyl}(T^*M)$ such that

$$\frac{\partial}{\partial t}F_0(t) - i\hbar[F_0(t), H] \ge -\hbar\operatorname{Op}_{\hbar}(b_0(t)) + O_{L^2 \to L^2}(\hbar^{\infty})$$

with supp $b_0(t) \subset \operatorname{supp} \psi_0(t)$ modulo $O(\hbar^{\infty})$.

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

(日) (四) (三) (三)

Pseudodifferential calculus

Proof of main theorem

Heisenberg derivative

If we take $c_1 \gg 1$, $F_1(t)$ satisfies

$$\begin{split} &\frac{\partial}{\partial t}F_{1}(t)-i\hbar[F_{1}(t),H]\\ &\geq \underbrace{-\hbar\operatorname{Op}_{\hbar}(b_{0}(t))+c_{1}\hbar\operatorname{Op}_{\hbar}(\psi_{1}(t))}_{\geq -\hbar^{2}\operatorname{Op}_{\hbar}S^{0}_{cyl}(T^{*}M)} \\ &+c_{1}t\hbar\underbrace{\left(\frac{\partial}{\partial t}\operatorname{Op}_{\hbar}(\psi_{1}(t))-i\hbar[\operatorname{Op}_{\hbar}(\psi_{1}(t)),H]\right)}_{\geq -\hbar\langle t\rangle^{-1}\operatorname{Op}_{\hbar}S^{0}_{cyl}(T^{*}M)} +O_{L^{2}\rightarrow L^{2}}(\hbar^{\infty}) \\ &\geq -\hbar^{2}\operatorname{Op}_{\hbar}(b_{1}(t))+O_{L^{2}\rightarrow L^{2}}(\hbar^{\infty}) \end{split}$$

for some $b_1(\hbar; t) \in S^0_{\text{cyl}}(T^*M)$ with $\operatorname{supp} b_1(t) \subset \operatorname{supp} \psi_1(t)$ modulo $O(\hbar^\infty)$.

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

Pseudodifferential calculus

Proof of main theorem

Heisenberg derivative

We repeat the same procedure and obtain

$$\frac{\partial}{\partial t}F_k(t) - i\hbar[F_k(t), H] \ge O_{L^2 \to L^2}(\hbar^{k+1}).$$

Noting that $A_{\hbar}(t) - F_k(\hbar^{-1}t) = O_{L^2 \to L^2}(\hbar^k)$, we obtain

$$\frac{\partial}{\partial t}A_{\hbar}(t) - i[A_{\hbar}(t), H] \ge O_{L^2 \to L^2}(\hbar^k)$$

for any $k \ge 0$.

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

イロト イポト イヨト イヨト

Proof of main theorem

Heisenberg derivative

We have

$$\begin{split} \langle A_{\hbar}(0)u, u \rangle \\ &= \langle A_{\hbar}(t_0)e^{-it_0H}u, e^{-it_0H}u \rangle \\ &- \int_0^{t_0} \left\langle \left(\frac{\partial}{\partial t}A_{\hbar}(t) - i[A_{\hbar}(t), H]\right)e^{-itH}u, e^{-itH}u \right\rangle dt \\ &\leq \langle A_{\hbar}(t_0)e^{-it_0H}u, e^{-it_0H}u \rangle + O(\hbar^{\infty}). \end{split}$$

By $\langle A_{\hbar}(t_0)u, u \rangle = \| \operatorname{Op}_{\hbar}(\psi_0(0))u \|_{L^2}^2$ and $\psi_0(0) = 1$ near $(x(0), \xi(0))$, we only have to prove

$$\left\langle A_{\hbar}(t_0)e^{-it_0H}u, e^{-it_0H}u\right\rangle = O(\hbar^{\infty}).$$

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo

< 同 > < 三

Pseudodifferential calculus

Proof of main theorem

Estimate of expectation value

Roughly speaking, this estimate holds since $A_{\hbar}(t_0) = \operatorname{Op}_{\hbar}(\psi_0(\hbar^{-1}t_0))^* \operatorname{Op}_{\hbar}(\psi_0(\hbar^{-1}t_0)) + \cdots$ and

$$\begin{split} \psi_j(\hbar^{-1}t_0) &= \chi \left(\frac{|\hbar r - \hbar r(\hbar^{-1}t_0)|}{4\delta_j t_0} \right) \chi \left(\frac{|\theta - \theta(\hbar^{-1}t_0)|}{\delta_j - (\hbar^{-1}t_0)^{-\lambda}} \right) \\ &\times \chi \left(\frac{|\rho - \rho(\hbar^{-1}t_0)|}{\delta_j - (\hbar^{-1}t_0)^{-\lambda}} \right) \chi \left(\frac{|\eta - \eta(\hbar^{-1}t_0)|}{\delta_j - (\hbar^{-1}t_0)^{-\lambda}} \right) \\ &\approx \chi \left(\frac{|\hbar r - \rho_\infty t_0|}{4\delta_j t_0} \right) \chi \left(\frac{|\theta - \theta_\infty|}{\delta_j} \right) \\ &\times \chi \left(\frac{|\rho - \rho_\infty|}{\delta_j} \right) \chi \left(\frac{|\eta - \eta_\infty|}{\delta_j} \right) \end{split}$$

for $0 < \hbar \ll 1$.

Shota Fukushima (D3)

Graduate School of Mathematical Science, the University of Tokyo