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Homogeneous wavefront sets (HWF)

Definition 1

For u ∈ L2(Rn), we define a homogeneous wavefront set
HWF(u) ⊂ T ∗Rn \ {(0, 0)} as follows: a point
(x0, ξ0) ∈ T ∗Rn \ {(0, 0)} is not in HWF(u) if there exists a
symbol a ∈ C∞

c (T ∗Rn) such that

a = 1 near (x0, ξ0),

∥aw(ℏx, ℏD)u∥L2 = O(ℏ∞).

Here aw(ℏx, ℏD) is defined as

aw(ℏx, ℏD)u(x) :=
1

(2π)n

∫
T ∗Rn

a

(
ℏx+ ℏy

2
, ℏξ
)
eiξ·(x−y)u(y) dydξ.
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Theorem 2 (Nakamura (2005))

Let H be a Hamiltonian of the form

H := −1

2

n∑
j,k=1

∂xj (ajk(x)∂xk
) + V (x)

with

|∂αx (ajk(x)− δjk)| ≤ Cα ⟨x⟩−µ−|α| (∃µ > 0),

|∂αxV (x)| ≤ Cα ⟨x⟩ν−|α| (∃ν < 2).

Let (x(t), ξ(t)) be a nontrapping classical orbit with respect to the
Hamiltonian h0 :=

∑n
j,k=1 ajk(x)ξjξk/2 and let

ξ∞ := limt→∞ ξ(t). Then, for any t0 > 0 and u ∈ L2(Rn),

(x(0), ξ(0)) ∈ WF(u) =⇒ (t0ξ∞, ξ∞) ∈ HWF(e−it0Hu).
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HWF on manifolds?

On manifolds: “ℏℏℏx”??? Instead of ℏx, we want to consider polar
coordinates (r, θ) and replace ℏx to (ℏr, θ).
=⇒ We want to describe the regularity such as

aw(ℏr, θ, ℏDr, ℏDθ)u = OL2(ℏ∞).

⇐⇒ radially homogeneous wavefront sets (Ito-Nakamura (Amer.
J. Math., 2009)).

Remark

The (complement of) HWF is described as

aw(ℏr, θ, ℏDr, ℏ2Dθ)u = OL2(ℏ∞).

For x ̸= 0, (x, ξ) ∈ WFrh(u) =⇒ (x, (ξ · x̂)x̂) ∈ HWF(u)
where x̂ := x/|x|.
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Manifolds with ends

Let M be an n-dimensional non-compact manifold.

Assumption 1

There exist

an open subset E of M ,

an (n− 1)-dimensional compact manifold S and

a diffeomorphism Ψ : E → R+ × S

such that the set M \Ψ−1((1,∞)) is a compact subset of M .
Here R+ := (0,∞).

The set E is called the end of M .
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Intrinsic L2 space

Let C∞
c (M ; Ω1/2) be the space of compactly supported smooth

half-densities on M . Then we introduce an inner product on
C∞
c (M ; Ω1/2) defined as

⟨u, v⟩ :=
∫
M
ũ(x)ṽ(x) dx

where u = ũ|dx|1/2 and v = ṽ|dx|1/2 locally. The intrinsic L2

space L2(M ; Ω1/2) is defined as the completion of C∞
c (M ; Ω1/2)

by the inner product ⟨·, ·⟩.
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Hamiltonian

We consider a Hamiltonian

H = −1

2
△g + V (x)

where

△g is the associated Laplacian with respect to a fixed metric
g on M ,

V ∈ C∞(M ;R) is a potential function.

△g acts on half-density u = ũ|volg(x)|1/2 as

△g(ũ|volg(x)|1/2) := (△gũ)|volg(x)|1/2.
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Metric

Assumption 2

The metric g is the form

Ψ∗g(r, θ, dr, dθ) = c(r, θ)2dr2 + h(r, θ, dθ)

where c(r, θ) > 0 and h(r, θ, dθ) is a r-dependent metric on S.

C−1f(r)2h(1, θ, dθ) ≤ h(r, θ, dθ) ≤ Cf(r)2h(1, θ, dθ) for
some constant C > 0 and a smooth function f : R → R+ with

c0r
−1 ≤ f ′(r)/f(r) ≤ C (r ≥ 1)

for some c0 > 1/2.
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Metric

Assumption 2 (continued)

For all multiindices α = (α0, α
′) ∈ Z≥0 × Zn−1

≥0 , the estimates

|∂α0
r ∂α

′
θ (c(r, θ)− 1)| ≤ Cαr

−1−µ,∣∣∣∣∣∣
n−1∑
j,k=1

∂α0
r ∂α

′
θ hjk(r, θ)wjwk

∣∣∣∣∣∣ ≤ Cαh(r, θ, w) (∀w ∈ TθS),

|∂α0
r ∂α

′
θ V (r, θ)| ≤ Cα.
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Classical free Hamiltonian

(ρ, η) ∈ T ∗
(r,θ)M : dual variable of (r, θ).

The classical free Hamiltonian is

h0(r, θ, ρ, η) =
1

2

(
c(r, θ)−2ρ2 + h∗(r, θ, η)

)
.

Here h∗(r, θ, η) is the dual metric

h∗(r, θ, η) :=

n−1∑
j,k=1

hjk(r, θ)ηjηk

where hjk(r, θ) is the inverse matrix of (hjk(r, θ))
n−1
j,k=1 defined as

h(r, θ, dθ) =

n−1∑
j,k=1

hjk(r, θ)dθjdθk.
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Classical analogue of Mourre estimate

Assumption 3

{fρ, h0} ≥ 2f ′(r)(h0 − Cr−1−µ)

holds for all (r, θ, ρ, η) ∈ T ∗E ∩ {r ≥ 1}.

Theorem 3

Let (r(t), θ(t), ρ(t), η(t)) be a nontrapping (r(t) → ∞ as t→ ∞)
classical orbit with respect to the Hamiltonian h0. Then, under
Assumption 1–3,

∃(ρ∞, θ∞, η∞) := lim
t→∞

(ρ(t), θ(t), η(t)) ∈ R+ × T ∗S.
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Radially homogeneous wavefront sets

Definition 4

For u ∈ L2(M ; Ω1/2), we define a radially homogeneous wavefront
set WFrh(u) ⊂ T ∗E as follows: a point (x0, ξ0) ∈ T ∗E does not
in WFrh(u) if there exist a ∈ C∞

c (T ∗Rn), χ ∈ C∞(M) and a
polar coordinate function
φ : U (⊂ E) → V = R+ × V ′ (⊂ R+ × S) near x0 such that

supp a ⊂ φ̃(T ∗E) and a = 1 near φ̃(x0, ξ0),

χ(r, θ) = ∃χang(θ) for r ≫ 1, suppχ ⊂ U , and χ = 1 near
Ψ−1([R,∞)× {θ∞}) for some R > 0,

∥χφ∗aw(ℏr, θ, ℏDr, ℏDθ)φ∗(χu)∥L2 = O(ℏ∞).
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Main theorem

Theorem 5 (F, arXiv:2201.09466 [math.AP])

Suppose Assumption 1–3. Let u ∈ L2(M ; Ω1/2) and
(x(t), ξ(t)) = Ψ−1(r(t), θ(t), ρ(t), η(t)) is a nontrapping classical
orbit. Then, for any t0 > 0, (x(0), ξ(0)) ∈ WF(u) implies
Ψ−1(ρ∞t0, θ∞, ρ∞, η∞) ∈ WFrh(e−it0Hu).
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Symbol class

Definition 6

For m ∈ R, we define a symbol class Sm
cyl(T

∗M) ⊂ C∞(T ∗M) as
follows:

For polar coordinates (r, θ), the estimate

|∂α0
r ∂α

′
θ ∂

β0
ρ ∂β

′
η a(r, θ, ρ, η)| ≤ Cαβ(1 + |ρ|+ |η|)m−|β|

holds for all multiindices α = (α0, α
′),

β = (β0, β
′) ∈ Z≥0 × Zn−1

≥0 .

The conditions of usual Kohn-Nirenberg symbols are satisfied
on M \ E.
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Quantization

We fix

a finite atlas {φι : Uι → Vι}ι∈I ,
a partition of unity {κι ∈ C∞(M)}ι∈I subordinate to the
atlas,

a family of functions {χι ∈ C∞(M)}ι∈I such that
suppχι ⊂ Uι and χι = 1 near suppκι,

and define

Opℏ(a)u :=
∑
ι∈I

χιφ
∗
ι (φ̃ι∗a)

w(x, ℏD)φ∗(χιu)

for a ∈ Sm
cyl(T

∗M) and u ∈ C∞
c (M ; Ω1/2).
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Quantization

The index set I is decomposed into I = IK ∪ I∞:

{Uι}ι∈IK covers M \ E and κι, χι ∈ C∞
c (Uι), and

{Uι}ι∈I∞ is a family of polar coordinates on E and
κι, χι ∈ C∞(Uι) depend only on θ near infinity.

Basic properties as in the usual pseudodifferential operators hold:

Calderón-Vaillancourt theorem:
∥Opℏ(a)∥L2→L2 ≤ C

∑
|α|≤N |∂αa| for a ∈ S0

cyl(T
∗M).

Sharp Gårding inequality:
ReOpℏ(a) ≥ −Opℏ(b) +OL2→L2(ℏ∞) for any
a ∈ S0

cyl(T
∗M) with Re a ≥ 0 and some b ∈ S0

cyl(T
∗M) with

supp b ⊂ supp a modulo O(ℏ∞).
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Quantization

Composition: For a ∈ Sm1
cyl (T

∗M) and b ∈ Sm2
cyl (T

∗M),

Opℏ(a)Opℏ(b) = Opℏ(c) +OL2→L2(ℏ∞),

[Opℏ(a),Opℏ(b)] = iℏOpℏ(c
′) +OL2→L2(ℏ∞)

for some c = ab+O
S
m1+m2−1
cyl (T ∗M)

(ℏ) and
c′ = {a, b}+O

S
m1+m2−2
cyl (T ∗M)

(ℏ) with
supp c, supp c′ ⊂ supp(ab) modulo O(ℏ∞).
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Remark: ΨDOs acting on half-densities

Remark

On Euclidean spaces.

aw(x, ℏD)(ũ|dx|1/2) := (aw(x, ℏD)ũ)|dx|1/2.

On curved spaces. Let g be a general metric on Rn and
g(x) := det(gjk(x)). Then, noting that the natural identification
ũ|g1/2dx|1/2 ≃ ũ, we have

aw(x, ℏD)(ũ|g1/2dx|1/2) = g−1/4aw(x, ℏD)(ũg1/4)|g1/2dx|1/2.
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Construction of symbols

We follow the argument in Ito-Nakamura (Amer. J. Math., 2009).
Take χ ∈ C∞

c (R with χ = 1 in [−1, 1] and χ = 0 outside [−2, 2].
For j = 0, 1, 2, . . ., we consider

ψ̃j(t, r, θ, ρ, η) :=χ

(
|r − r(t)|

4δjt

)
χ

(
|θ − θ(t)|
δj − t−λ

)
× χ

(
|ρ− ρ(t)|
δj − t−λ

)
χ

(
|η − η(t)|
δj − t−λ

)
for t ≥ T (≫ 1). δj > 0 and λ > 0 are chosen appropriately.
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Construction of symbols

Take a function α ∈ C∞(R) with α = 0 in (−∞, T ) and α = 1 in
(T + 1,∞), and we “extend” ψ̃j(t, . . .) (t ≥ T ) to ψj(t, . . .)
(t ≥ 0) by the transport equation

∂ψj

∂t
+ {ψj , h0} = α(t)

(
∂ψ̃j

∂t
+ {ψ̃j , h0}

)
,

ψj(T + 1, r, θ, ρ, η) = ψ̃j(T + 1, r, θ, ρ, η).

Lemma 7

ψj belongs to S−2
cyl (T

∗M) and satisfies

∂ψj

∂t
+ {ψj , h0} ≥ 0,

∂ψj

∂t
+ {ψj , h0} = OS0

cyl(T
∗M)(⟨t⟩

−1).
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Construction of symbols

We define a symbol of the form

ã(ℏ; t, x, ξ) ∼ t

∞∑
j=1

cjℏjψj(t, x, ξ)

where cj ’s are positive constants, and consider

Aℏ(t) := Opℏ(ψ0(ℏ−1t))∗Opℏ(ψ0(ℏ−1t)) + Opℏ(ã(ℏ; ℏ−1t)).

we set

Fk(t) := Opℏ(ψ0(t))
∗Opℏ(ψ0(t)) + t

k∑
j=1

cjℏjψj(t, x, ξ).
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Heisenberg derivatives

Note that H = ℏ−2(Opℏ(h0) + ℏ2V + ℏ2Vg/2) for some
Vg(r, θ) ∈ S0

cyl(T
∗M). We apply the sharp Gårding inequality for

F0(t) and obtain:

Lemma 8

There exists a symbol b0(ℏ; t, x, ξ) ∈ S0
cyl(T

∗M) such that

∂

∂t
F0(t)− iℏ[F0(t),H] ≥ −ℏOpℏ(b0(t)) +OL2→L2(ℏ∞)

with supp b0(t) ⊂ suppψ0(t) modulo O(ℏ∞).
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Heisenberg derivative

If we take c1 ≫ 1, F1(t) satisfies

∂

∂t
F1(t)− iℏ[F1(t),H]

≥ −ℏOpℏ(b0(t)) + c1ℏOpℏ(ψ1(t))︸ ︷︷ ︸
≥−ℏ2 Opℏ S

0
cyl(T

∗M)

+ c1tℏ
(
∂

∂t
Opℏ(ψ1(t))− iℏ[Opℏ(ψ1(t)),H]

)
︸ ︷︷ ︸

≥−ℏ⟨t⟩−1 Opℏ S
0
cyl(T

∗M)

+OL2→L2(ℏ∞)

≥ −ℏ2Opℏ(b1(t)) +OL2→L2(ℏ∞)

for some b1(ℏ; t) ∈ S0
cyl(T

∗M) with supp b1(t) ⊂ suppψ1(t)
modulo O(ℏ∞).
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Heisenberg derivative

We repeat the same procedure and obtain

∂

∂t
Fk(t)− iℏ[Fk(t),H] ≥ OL2→L2(ℏk+1).

Noting that Aℏ(t)− Fk(ℏ−1t) = OL2→L2(ℏk), we obtain

∂

∂t
Aℏ(t)− i[Aℏ(t),H] ≥ OL2→L2(ℏk)

for any k ≥ 0.
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Heisenberg derivative

We have

⟨Aℏ(0)u, u⟩
=
〈
Aℏ(t0)e

−it0Hu, e−it0Hu
〉

−
∫ t0

0

〈(
∂

∂t
Aℏ(t)− i[Aℏ(t),H]

)
e−itHu, e−itHu

〉
dt

≤
〈
Aℏ(t0)e

−it0Hu, e−it0Hu
〉
+O(ℏ∞).

By ⟨Aℏ(t0)u, u⟩ = ∥Opℏ(ψ0(0))u∥2L2 and ψ0(0) = 1 near
(x(0), ξ(0)), we only have to prove〈

Aℏ(t0)e
−it0Hu, e−it0Hu

〉
= O(ℏ∞).
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Estimate of expectation value

Roughly speaking, this estimate holds since
Aℏ(t0) = Opℏ(ψ0(ℏ−1t0))

∗Opℏ(ψ0(ℏ−1t0)) + · · · and

ψj(ℏ−1t0) = χ

(
|ℏr − ℏr(ℏ−1t0)|

4δjt0

)
χ

(
|θ − θ(ℏ−1t0)|
δj − (ℏ−1t0)−λ

)
× χ

(
|ρ− ρ(ℏ−1t0)|
δj − (ℏ−1t0)−λ

)
χ

(
|η − η(ℏ−1t0)|
δj − (ℏ−1t0)−λ

)
≈ χ

(
|ℏr − ρ∞t0|

4δjt0

)
χ

(
|θ − θ∞|

δj

)
× χ

(
|ρ− ρ∞|

δj

)
χ

(
|η − η∞|

δj

)
for 0 < ℏ ≪ 1.
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