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Homogeneous wavefront sets
©00

Homogeneous wavefront sets (HWF)

Definition 1

For u € L2(R"), we define a homogeneous wavefront set
HWF(u) C T*R™ \ {(0,0)} as follows: a point
(x0,&0) € T*R™\ {(0,0)} is not in HWF(u) if there exists a
symbol a € C°(T*R"™) such that

m a =1 near (z9,&),

m |V (hz, hD)u| 2 = O(h>).
Here aY (hx, hD) is defined as

h h
a" (hx, AD)u(z) := (23()71 /T*Rna< x—;— Y h€> CEu(y) dyde.
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Theorem 2 (Nakamura (2005))

Let H be a Hamiltonian of the form

:_*Za:pj a]k )+V()
7,k=1

with

= (05 (aju(2) = 3j)| < Ca ()™~ @ >0),

m |02V (@) < Ca ) @v < 2).
Let (x(t),&(t)) be a nontrapping classical orbit with respect to the
Hamiltonian ho := 37— aji(2)€;€k/2 and let
Eoo i= limy o0 &(t). Then, for any tg > 0 and u € L?(R™),

(2(0),£(0)) € WF (1) = (tofoo, Eoo) € HWF (e ~t0Hy,),
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Homogeneous wavefront sets
ooe

HWF on manifolds?

On manifolds: “hAx” ??? Instead of hx, we want to consider polar
coordinates (r,6) and replace hz to (hr,6).
—> We want to describe the regularity such as

av (hr,0,hD,, hDg)u = Op2(h>).

<= radially homogeneous wavefront sets (Ito-Nakamura (Amer.
J. Math., 2009)).

m The (complement of) HWF is described as
a¥ (hr, 8, iD,, 12 Dg)u = Op2 (™).
m For x #0, (z,€) € WF™(u) = (, (¢ - 2)&) € HWF (u)
where & := x/|z|.
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Radially homogeneous wavefront sets
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Manifolds with ends

Let M be an n-dimensional non-compact manifold.

Assumption 1

There exist

m an open subset E of M,

m an (n — 1)-dimensional compact manifold S and

m a diffeomorphism ¥ : £ — R, x S
such that the set M \ W~=1((1,00)) is a compact subset of M.
Here R := (0, 00).

The set E is called the end of M.
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Radially homogeneous wavefront sets
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Intrinsic L? space

Let C2°(M;Q/?) be the space of compactly supported smooth
half-densities on M. Then we introduce an inner product on
C°(M;Q'/?) defined as

(u,v) := /M u(z)o(z) dx

where u = @i|dz|'/? and v = 5|dz|"/? locally. The intrinsic L?
space L2(M;Q'/?) is defined as the completion of C2°(M;Q1/?)
by the inner product (-, -).
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Radially homogeneous wavefront sets
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Hamiltonian

We consider a Hamiltonian
1
H= —§Ag + V(z)

where

m A\, is the associated Laplacian with respect to a fixed metric
gon M,

m V € C>®(M;R) is a potential function.

A, acts on half-density u = i|vol,(x)|*/? as

Dy ilvoly (2)]/2) = (A1) voly ()] 2.
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Radially homogeneous wavefront sets
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Metric

m The metric g is the form

\I/*g(T', 0, dr, da) = C(T, 0)2d7”2 ol h(r, 0, d9)

where ¢(r,6) > 0 and h(r,0,df) is a r-dependent metric on S.
m CLf(r)2h(1,0,d0) < h(r,0,d) < Cf(r)*h(1,0,d0) for
some constant C' > 0 and a smooth function f : R — R with

cor ' < fi(r)/f(r)<C (r=1)

for some ¢y > 1/2.

Shota Fukushima (D3) Graduate School of Mathematical Science, the University of Tokyo

Propagation of singularities for Schrodinger equations on manifolds with ends



Radially homogeneous wavefront sets
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Metric

Assumption 2 (continued)
m For all multiindices o = (v, ') € Zxo x Z%,", the estimates
102008 (c(r,0) — 1)| < Car ™74,
n—1

Z 8,‘?‘083‘/hjk(r,9)ijk < Coh(r,0,w) (Yw € TypS),
k=1

102005V (r,0)| < Cha.
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Radially homogeneous wavefront sets
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Classical free Hamiltonian

m(p,n) € (. 9yM: dual variable of (r,0).
The classical free Hamiltonian is

1 - *
hO(r)eapan) = 5 (C(T,@) 2p2 +h (7’,9,7’])) :

Here h*(r,0,n) is the dual metric

n—1

h*(r') 07 /’7) = Z hjk(ra 0)77]77]6
k=1
where h7%(r,6) is the inverse matrix of (hjk(r,H))Zgil defined as

n—1
h(r,0,d0) = Y hjk(r,0)d6;doy.
j,k=1
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Radially homogeneous wavefront sets
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Classical analogue of Mourre estimate

Assumption 3

{fp,ho} = 2f'(r)(ho — Cr~'7H)
holds for all (r,0,p,n) € T*E N {r > 1}.

Theorem 3

Let (r(t),0(t), p(t),n(t)) be a nontrapping (r(t) — oo ast — o0)
classical orbit with respect to the Hamiltonian hy. Then, under
Assumption 1-3,

lim (p(t), 0(t), 7(t)) € Ry x T*8.

o t—o00

El(Pooa e 7700) :
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Radially homogeneous wavefront sets
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Radially homogeneous wavefront sets

Definition 4

For u € L?(M;Q2), we define a radially homogeneous wavefront
set WE™ (u) € T*F as follows: a point (z0,&y) € T*E does not
in WEF™ (v) if there exist a € O°(T*R"), x € C®°(M) and a
polar coordinate function
p:U(CE)—=V =Ry xV'(CR;4 xS) near xy such that

m suppa C ¢(T*FE) and a = 1 near ¢(xg, &),

m x(r,0) = Ixang(0) for r > 1, suppx C U, and x =1 near
UL([R,0) x {0x}) for some R > 0,

m [[xp*a®(hr,0, ADy, hDg)p. (xu)| 12 = O(h*).
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Radially homogeneous wavefront sets

00000000 e

Main theorem

Theorem 5 (F, arXiv:2201.09466 [math.AP])

Suppose Assumption 1-3. Let v € L*(M;Q'/?) and

(2(t),&(t)) = U=L(r(t),0(t), p(t),n(t)) is a nontrapping classical
orbit. Then, for any to > 0, (z(0),£(0)) € WF(u) implies

U (pooto; Ooo, Poos Noo) € WFrh(e_itoHu).
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Pseudodifferential calculus
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Symbol class

For m € R, we define a symbol class S (T*M) C C*°(T*M) as

cyl
follows:

m For polar coordinates (r,#), the estimate
67005 8,°8; a(r, 6, p,m)| < Cas(L+ |pl + o)™V

holds for all multiindices o = (ayg, ),
B = (Bo, B') € Zzo x L35

m The conditions of usual Kohn-Nirenberg symbols are satisfied
on M\ E.
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Pseudodifferential calculus
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Quantization

We fix
m a finite atlas {p, : U, = V. }.er,

m a partition of unity {k, € C°°(M)},es subordinate to the
atlas,

m a family of functions {x, € C°°(M)},cs such that
supp x. C U, and x, = 1 near supp k,,

and define

Opy(a)u =Y xup; (Brxa)™ (z, hD)pu(x11)
el

for a € 5S¢, (T M) and u € CZ°(M; /2.
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Pseudodifferential calculus
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Quantization

The index set I is decomposed into I = I U I:
m {U}er, covers M\ E and k,,x, € C*(U,), and

m {U,}.c1, is a family of polar coordinates on E and
K, X € C%°(U,) depend only on 6 near infinity.

Basic properties as in the usual pseudodifferential operators hold:

m Calderén-Vaillancourt theorem:
10ps(a)lL2—s 2 < Oy < [0%al for a € S, (T*M).
m Sharp Garding inequality:
Re Opy(a) > — Opy(b) + Op2_r2(h°) for any
a€ Sgyl( *M) with Rea > 0 and some b € Sgyl( *M) with
supp b C supp a modulo O(A™).
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Pseudodifferential calculus
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Quantization

m Composition: For a € ST (T M) and b € S (T M),
Opy(a) Opy(b) = Opj(c) + Opz_,12(h%),
[Opj(a), Opy(b)] = ih Opy(c) + Op2 s 12(A>)

(7 M)(h) and
(T*M)(h) with
supp ¢, supp ¢ C supp(ab) modulo O(h™).

for some ¢ = ab + Osmﬁmrl
cyl

Cl == {CL, b} + OSm1+m272
cyl
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Pseudodifferential calculus
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Remark: WDOs acting on half-densities

On Euclidean spaces.

o (x, iD)(a|dz|'?) := (a% (z, hD)w)|dx|"/2.

On curved spaces. Let g be a general metric on R" and
g(x) := det(gjx(x)). Then, noting that the natural identification
i|g*/?dx|'/? ~ @, we have

a¥ (x, hD)(a|g"?dz|'?) = g=Y*a" (z, hD)(ag"/*)|g" 2dx|/2.
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Proof of main theorem
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Construction of symbols

We follow the argument in lto-Nakamura (Amer. J. Math., 2009).
Take x € C°(R with x =1 in [—1,1] and x = 0 outside [—2, 2].
For j =0,1,2,..., we consider

&i(t,r,0,p,n) ==x <|7“ —T(t)|> \ <|9 — 0(t)|>

46t §; —t=A
lp— p(t)] In —n(t)|
(5 (=

fort >T(>1). §; > 0 and A > 0 are chosen appropriately.
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Proof of main theorem
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Construction of symbols

Take a function a € C*°(R) with o =0 in (—o0
(T'+1,00), and we “extend” #;(t,...) (t >T)
(t > 0) by the transport equation

T)and a=11n
0 Uy(t,.. )

—+ -

) s B
2 T Wi ho} = alt) ((% + {¥5, ho}) ;
%(T + ]-’Ta 07[)777) = ’QZ](T_‘_ 1#3970777)-

1 belongs to S&%(T*M) and satisfies

;
ot

9;

+ {¥j, ho} = 0, 2% T {;, ho} = Ogo (@) ((t ty~h).
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Proof of main theorem
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Construction of symbols

We define a symbol of the form
a(hst, o, ) ~ £y eIy (t, @, €)
j=1
where c¢;'s are positive constants, and consider
Ap(t) := Opy(vho(h~11))* Opy (o (h™'t)) + Opy(a(h; A~ 11)).

we set

k
Fi(t) := Opy (1o ()" Opy(tho(t)) + D c;hl;(t,x,€).

j=1
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Proof of main theorem
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Heisenberg derivatives

Note that H = i~2(Opy,(ho) + h2V + h?V,/2) for some
Vy(r,8) € Scyl( T*M). We apply the sharp Gérding inequality for
Fy(t) and obtain:

There exists a symbol by(h;t,z,§) € Scyl( *M) such that

0

5¢L0(t) = ih{Fo(t), H] = —hOpy(bo(t)) + Oz 12 (%)

with supp bo(t) C supp 1o(t) modulo O(h>).
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Proof of main theorem
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Heisenberg derivative

If we take ¢; > 1, Fi(t) satisfies

SR — iF (), H]

> —hOpy,(bo(t)) + c1h Opy (11 (1))

—h2 Opy, SO I(T* )

T oth (;’ — ih[Opa(a (1)), 1) O ()

2

-~

>=h{t)” Oph Sgy1

> —h? Opy(b1(t)) + Opz_y12(h™)

(T*M)

for some by (h;t) € SO, (T* M) with supp by (t) C supp ¢1(t)
modulo O(h*>).
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Proof of main theorem
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Heisenberg derivative

We repeat the same procedure and obtain

0 .
aFk(t) — ih[Fy(t), H] > Opa_, 12 (B*F1).

Noting that Ap(t) — F(h~'t) = Op2_,;2(h¥), we obtain

A1) — iAn(0), H) > Ogaypa ()

for any k > 0.
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Proof of main theorem
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Heisenberg derivative

We have

(An(0)u, u)

= <Aﬁ(t0)e_it°Hu,e_it0Hu>
to a . )
- / <<6tAh(t) - i[Ah(t),H]) ey, e_ZtHu> dt
0
< <Aﬁ(t0)e_it°Hu, e_itOHu> + O(h™).

By (An(to)u,u) = || Opy (1o (0))ul7, and (0) =1 near
((0),£(0)), we only have to prove

<Ah(t0)e_it0Hu, e_itOHu> = O(h™).
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Proof of main theorem
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Estimate of expectation value

Roughly speaking, this estimate holds since
Ap(to) = Opy(vo(h 1 t0))* Opy(vo(h o)) + - -+ and

hr — hr(h™ 't 6 —0(h!
Y (i Cal T Gl

lp — p(h™ )] In —n(h~t)|
(=)} i
- |hr — pootol 0 — O
~X ( w60 ) X\Us,
P — pool 17 — Moo
X ( 0; X dj

for0 < h< 1. ]
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