Topological Levinson's theorem with two Hilbert spaces: from finite graphs to insulators

Hideki Inoue (University of Lyon)

in collaboration with

Johannes Kellendonk & Hermann Schulz-Baldes

March February 2, 2022 Introduction

Original version of Levinson's theorem

Levinson's theorem is a fundamental relation in QM originally established by N. Levinson in 1949.

Theorem

Consider the radial Schrödinger operator

$$H = -\partial_r^2 + v(r) \Big(\equiv H_{\ell=0}\Big)$$
 with Dirichlet b.c.

acting on $\mathcal{H} = L^2(\mathbb{R}_+)$ with a potential v decaying faster than r^{-2} as $r \to \infty$. Then, one has the relation

scattering phase shift = dim $\mathcal{H}_{pp}(H) + \delta$,

where the correction term δ is given by

$$\delta = \begin{cases} 1/2 & \text{if } H \text{ has zero-energy resonance}, \\ 0 & \text{otherwise.} \end{cases}$$

Topological version of Levinson's theorem

Topological approach has been widely popularized.

Description with the previous model cf. [Kellendonk& Richard, 2007] Let $H_0 := -\partial_r^2$ with Dirichlet boundary condition.

1. The wave operators exist and are complete:

 $W_{\pm} := \operatorname{s-lim}_{t \to \pm \infty} \mathrm{e}^{itH} \mathrm{e}^{-itH_0}$

2. One constructs a $C^*\text{-subalgebra}\ \mathcal{E}\subset\mathcal{B}(\mathcal{H})$ satisfying

$$0 \to \mathcal{K}(\mathcal{H}) \to \mathcal{E} \xrightarrow{\pi} C(\mathbb{T}) \to 0 \qquad \text{(exact)},$$

 $W_{-} \in \mathcal{E}$ and $\pi(W_{-}) \in C(\mathbb{T})$ is unitary.

3. It follows from K-theory that the following index theorem holds:

Wind
$$(\pi(W_-)) = -$$
 Index (W_-) .

4. One observes that the above index theorem is equivalent to Levinson's theorem.

Scattering theory with two Hilbert spaces

In practice, free and perturbed systems may act on different spaces, i.e.

$$H_0 \curvearrowright \mathcal{H}_0, \quad H \curvearrowright \mathcal{H} \text{ and } \mathcal{H}_0 \neq \mathcal{H}.$$

Then one may introduce an identification operator $J: \mathcal{H}_0 \to \mathcal{H}$ to construct the wave operator as

$$\boldsymbol{W}_{\pm} \equiv W_{\pm}(H, H_0; J) := \underset{t \to \pm \infty}{\text{s-lim}} e^{itH} \boldsymbol{J} e^{-itH_0}$$

Motivating Question Can we still give a topological interpretation for Levinson's theorem in two Hilbert spaces setting?

Problem

 C^* -algebras are defined as a subalgebra of $\mathcal{B}(\mathcal{G})$ for a Hilbert space \mathcal{G} . However, $W_{\pm} \in \mathcal{B}(\mathcal{H}_0, \mathcal{H})$ whenever they exist.

 \longrightarrow There is **no** C^* -algebra \mathcal{E} containing the two-space WO W_- .

Let us discuss this problem with a simple example!

Introduction

Generalized Childs' Graph Model

Mathematical Scattering Theory for Generalized Childs' Graph Model

Topological Levinson's Theorem

Work in progress: Bulk-edge correspondence via two spaces scattering

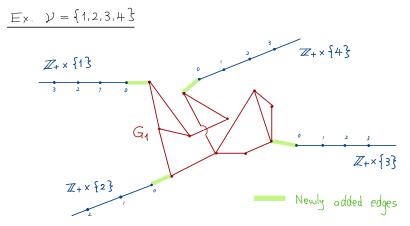
Generalized Childs' Graph Model

Childs' graph model

Childs' graph model [Childs et. al. 2011 & 2012] consists of a bundle of wires attached to a finite graph G_1 .

• H_0 : the Laplacian on the bundle of wires $\mathbb{Z}_+ \times \mathcal{V}$ with \mathcal{V} finite,

 \blacktriangleright H: the Laplacian on the graph G obtained by attaching wires to G_1



Levinson's theorem for Childs' graph model

Theorem (Childs et. al. 2011 & 2012)

Set $s(\lambda) := \det(S(\lambda))$ with $S(\lambda) \in \mathcal{B}(\ell^2(\mathcal{V}))$ being the scattering matrix for the pair (H_0, H) . Then, one has

 $\frac{1}{2\pi i} \int_{\sigma(H_0)} s'(\lambda) s(\lambda)^* d\lambda = \#\{\text{bound states}\} + \delta - \#\{\text{vertices of } G_1\}$

New Question Why does #{vertices of G_1 } appear?

Generalized Childs' graph model

The free system H_0 (wires) Let $\mathbb{Z}_+ := \{0, 1, 2, ...\}$ and \mathcal{V} be a countable set. A (free) particle in a bundle of wires $\mathbb{Z}_+ \times \mathcal{V}$ are described by

 $\begin{cases} \mathsf{Hilbert space} & \mathcal{H}_0 := \ell^2(\mathbb{Z}_+ \times \mathcal{V}) \equiv \ell^2(\mathbb{Z}_+) \otimes \ell^2(\mathcal{V}), \\ \mathsf{Hamiltonian} & H_0 := h_0 \otimes \mathbf{1}_{\mathcal{V}}, \end{cases}$

where $h_0 := (T + T^*)/2$ with T being the shift operator.

•
$$\sigma(H_0) = \sigma_{\rm ac}(H_0) = [-1, 1].$$

▶ We fix a spectral representation for *H*₀

$$\mathscr{F}_0 H_0 \mathscr{F}_0^* = \int_{[-1,1]} \lambda d\lambda, \quad \mathscr{F}_0 : \mathcal{H}_0 \to \int_{[-1,1]}^{\oplus} \mathfrak{h}_\lambda d\lambda,$$

 $\mathfrak{h} = \ell^2(\mathcal{V})$

with $\mathfrak{h}_{\lambda} \equiv \mathfrak{h} = \ell^2(\mathcal{V})$

<u>**Remark**</u> Discrete symmetries can be included by considering $H_0 \otimes \sigma$ with $\sigma = \sigma^* = \sigma^{-1}$, $\sigma \in M_L(\mathbb{C})$.

Generalized Childs' graph model

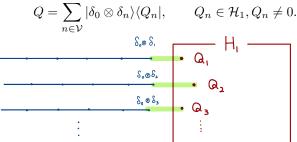
The perturbed system (wires + "graph")

Let H_1 be a self-adjoint operator on a separable Hilbert space \mathcal{H}_1 .

The perturbed system is described by

$$\left\{egin{array}{ll} \mathsf{Hilbert\ space} & \mathcal{H}:=\mathcal{H}_0\oplus\mathcal{H}_1, \ \mathsf{Hamiltonian} & H:=egin{pmatrix} H_0&Q\Q^*&H_1 \end{pmatrix}. \end{array}
ight.$$

The interaction term Q: H₁ → H₀ is a <u>bounded</u> operator of the form



Mathematical Scattering Theory for Generalized Childs' Graph Model

Wave and scattering operators

Set $J : \mathcal{H}_0 \hookrightarrow \mathcal{H}$ to be the inclusion operator. Then $HJ - JH_0 = Q^*$ and the existence of the WO can be justified with Cook's criterion.

Lemma

For any H_1 , the WO $W_{\pm} \equiv W_{\pm}(H, H_0; J)$ exist and are isometries.

• $oldsymbol{W}_{\pm}H_0=Holdsymbol{W}_{\pm}$ (intertwining property) ,

▶
$$\operatorname{Ran}(W_{\pm}) \subset \mathcal{H}_{\operatorname{ac}}(H).$$

Remark

By Kato-Rosenblum theorem, W_± are complete for the Childs' graph model, i.e. #V, dim H₁ < ∞.</p>

The scattering operator S and the scattering matrix $S(\cdot)$ are defined by

Stationary expressions

We use the stationary approach to compute an explicit formula for S.

Resolvents For $z \in \mathbb{C}$ with $\Im(z) \neq 0$, we set

 $R_0(z) := (H_0 - z)^{-1}, \quad R_1(z) = (H_1 - z)^{-1}, \quad R(z) = (H - z)^{-1}.$

Lemma

The following stationary formulas hold:

$$\langle f, \boldsymbol{W}_{\pm} f_0 \rangle_{\mathcal{H}} = \int_{-1}^{1} \lim_{\varepsilon \downarrow 0} \frac{\varepsilon}{\pi} \langle R(\lambda \pm i\varepsilon) f, JR_0(\lambda \pm i\varepsilon) f_0 \rangle_{\mathcal{H}} \mathrm{d}\lambda$$

for any $f \in \mathcal{H}_{ac}(H)$ and f_0 in a dense subset of \mathcal{H}_0 .

Reduction to one Hilbert space components

Let us consider the components

 $W_{\pm} := J^* \boldsymbol{W}_{\pm},$

which belong to $\mathcal{B}(\mathcal{H}_0)$.

1. One can compute S from the component W_{-} as

$$S = \operatorname{s-lim}_{t \to \infty} \mathrm{e}^{itH_0} W_- \mathrm{e}^{-itH_0}.$$

2. It follows from the stationary formula that

$$\langle f_0', W_- f_0 \rangle_{\mathcal{H}_0} = \int_{-1}^1 \lim_{\varepsilon \downarrow 0} \frac{\varepsilon}{\pi} \langle J^* R(\lambda - i\varepsilon) J f_0', R_0(\lambda - i\varepsilon) f_0 \rangle_{\mathcal{H}_0} \mathrm{d}\lambda$$

3. By Schur complement formula,

$$J^*R(z)J = (H_0 - QR_1(z)Q^* - z)^{-1}$$

The term -QR₁(z)Q^{*} can be considered as an energy dependent potential localized on the boundary {0} × V ⊂ Z₊ × V.

Explicit formula for the one Hilbert space component W_-

Theorem

Suppose that $\sigma(H_0) \cap \sigma(H_1)$ has Lebsegue measure 0. Then, one has

$$W_{-} = \mathbf{1} + \frac{1}{2} \{ \tanh(A) - i \tanh(B) \cosh(A)^{-1} \} (S - \mathbf{1}) + K,$$

where

- $\blacktriangleright B := \tanh^{-1}(H_0),$
- A is a self-adjoint operator satisfying $[B, A] = i\mathbf{1}$,
- \blacktriangleright the remainder term K is generated by S and

a(A)b(B) with $a, b \in \mathcal{S}(\mathbb{R})$

 $\underline{\mathbf{Reamrk}}\ A$ corresponds to the generator of dilation groups in the continuous setting.

<u>Remark</u> Surprisingly, a completely same formula for the wave operator holds for Schrödinger operators on \mathbb{Z}_+ [I-Tsuzu, 2019].

Explicit formula for the scattering matrix $S(\lambda)$

Corollary

Suppose that $\sigma(H_0) \cap \sigma(H_1)$ has Lebsegue measure 0. Then, one has

$$S(\lambda) = \frac{1 + 2e^{+i\theta}M(\lambda)}{1 + 2e^{-i\theta}M(\lambda)}, \qquad \text{a.e. } \lambda \in [-1, 1],$$

where

$$\sum_{x=0}^{\infty} \delta_x \otimes \psi_x \mapsto \psi_0, \qquad \psi_x \in \ell^2(\mathcal{V}).$$

As a consequence, the scattering operator S is unitary.

Remarks

Corollary

If $\sigma(H_1) \cap \sigma(H_0)$ is a finite set, then the operator-valued function

$$[-1,1] \ni \lambda \mapsto S(\lambda) \in \mathcal{B}(\ell^2(\mathcal{V}))$$

is smooth in norm.

<u>Remark</u> Our assumption is not optimal.

Example (attach wires everywhere) Let $\mathcal{H}_1 = \ell^2(\mathcal{V})$ and $Q = \Pi^*$. Then, $Q^*\Pi^* = \Pi Q = \mathbf{1}_{\mathcal{V}}$ and therefore

$$S(\lambda) = \frac{H_1 - \lambda + 2\mathrm{e}^{+i\theta}}{H_1 - \lambda + 2\mathrm{e}^{-i\theta}}.$$

 $\longrightarrow S$ is unitary even if H_1 has ac spectrum on [-1,1].

Topological Levinson's Theorem

 C^* -algebraic framework cf. [Kellendonk-Richard,2007]

Assumption

Throughout this section we suppose that

•
$$\sigma(H_1) \cap \sigma(H_0)$$
 is a finite set,

 $\blacktriangleright N := \# \mathcal{V} < \infty.$

As a consequence, $(-1,1) \ni \lambda \mapsto S(\lambda) \in M_N(\mathbb{C})$ is smooth.

Let $\overline{\mathbb{R}}:=[-\infty,\infty]$ be the two-point compactification of $\mathbb{R}.$

• We define a
$$C^*$$
-algebra \mathcal{E} on \mathcal{H}_0 by

$$\mathcal{E} := C^* \Big(a(A)b(B)c \ \Big| \ a, b \in C(\overline{\mathbb{R}}), \ c \in M_N(\mathbb{C}) \Big),$$

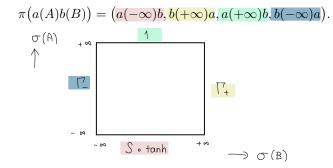
 \blacktriangleright The set of compact operators on \mathcal{H}_0 is also expressed as

$$\mathcal{K}(\mathcal{H}_0) = C^* \Big(a(A)b(B)c \ \Big| \ a, b \in C_0(\mathbb{R}), \ c \in M_N(\mathbb{C}) \Big).$$

 $\blacktriangleright W_{-} \in \mathcal{E} \text{ and } \underset{\mathcal{N}}{K} \in \mathcal{K}.$

Quotient algebra

- $\blacktriangleright \ \mathcal{E}/\mathcal{K}(\mathcal{H}_0) \cong C(\Box) \otimes M_N(\mathbb{C}) \text{ with } \Box = \partial(\overline{\mathbb{R}} \times \overline{\mathbb{R}}) \cong \mathbb{T}.$
- The quotient map $\pi: \mathcal{E} \to C(\Box; M_N(\mathbb{C}))$ is given by



 $\blacktriangleright \pi(W_{-}) =: \Gamma \equiv (S \circ \tanh, \Gamma_{+}, 1, \Gamma_{-}),$

• The functions Γ_{\pm} are given by

$$\Gamma_{\pm}(t) = \mathbf{1} - E_{\pm} - \left(\tanh(t) \mp i \cosh(t)^{-1}\right) E_{\pm}, \qquad t \in \mathbb{R},$$

where E_{\pm} are projections (onto the set of resonances at ± 1).

Relative topological Levinson's theorem

We get the following index theorem not for the wave operator W_{-} but for the one Hilbert space component W_{-} :

Theorem

Under Assumption (A), Γ is a unitary element in $C(\Box) \otimes M_N(\mathbb{C})$. Moreover, one has

Wind
$$(\det(\Gamma)) = -\operatorname{Index}(W_{-})$$

<u>Remark</u> With the notation $s(\lambda) = \det(S(\lambda))$, the l.h.s. is given by

Wind
$$(\det(\Gamma)) = \frac{1}{2\pi i} \int_{-1}^{1} s'(\lambda) s(\lambda)^* d\lambda - \delta$$

Topological interpretation of Childs-Levinson theorem

Consider Childs' graph model (i.e. $\#\mathcal{V}, \dim \mathcal{H}_1 < \infty$).

- $J: \mathcal{H}_0 \hookrightarrow \mathcal{H}$ is Fredholm with $\operatorname{Index}(J) = -\dim \mathcal{H}_1$.
- Since $W_{-} = JW_{-} + (\text{finite-rank})$, W_{-} is also Fredholm.

Combining this with the completeness

$$\mathcal{H}_{\rm sc}(H)=0 \quad \text{and} \quad \operatorname{coker}(\boldsymbol{W}_{-})=\mathcal{H}_{\rm pp}(H).$$

Then, the r.h.s. of topological Levinson's theorem is given by

$$\begin{aligned} -\operatorname{Index}(W_{-}) &= -\operatorname{Index}(J^{*}W_{-}) \\ &= -\operatorname{Index}(W_{-}) + \operatorname{Index}(J) \\ &= \dim\operatorname{coker}(W_{-}) - \dim\mathcal{H}_{1} \\ &= \dim\mathcal{H}_{\operatorname{pp}}(H) - \#\{\operatorname{vertices} \text{ of } G_{1}\} \end{aligned}$$

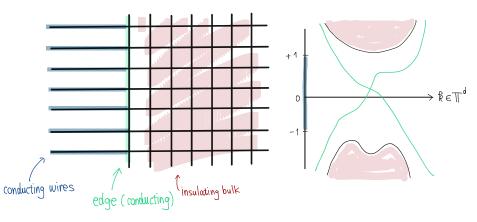
<u>Conclusion</u> Levinson's theorem for Childs' graph model is also a realization of the index theorem!

Work in progress: Bulk-edge correspondence via two spaces scattering

The model /

The model (Wires + (1 + d)-dim insulator)

- $H_{\text{bulk}} \curvearrowright \ell^2(\mathbb{Z}^{1+d})$, periodic with a gap on $\sigma(H_0)$,
- ▶ $H_1 := H_{\text{edge}} \frown \ell^2(\mathbb{Z}_+ \times \mathbb{Z}^d)$, \mathbb{Z}^d -periodic with gapless edge states,
- Wires are also attached periodically to the boundary $\mathcal{V} = \mathbb{Z}^d$.



Unitarity of \boldsymbol{S} for edge Hamiltonians

By the Floquet-Bloch decomposition w. r. t. the \mathbb{Z}^d -action,

$$H_0 \cong \int_{\mathbb{T}^d} H_0(k) \mathrm{d}k, \quad H_1 \cong \int_{\mathbb{T}^d} H_1(k) \mathrm{d}k, \quad H \cong \int_{\mathbb{T}^d} H(k) \mathrm{d}k,$$

$$\mathbf{W}_{\pm} \cong \int_{\mathbb{T}^d} \mathbf{W}_{\pm}(k) \mathrm{d}k, \quad W_{\pm} \cong \int_{\mathbb{T}^d} W_{\pm}(k) \mathrm{d}k, \quad S \cong \int_{\mathbb{T}^d} S(k) \mathrm{d}k.$$

$$\blacktriangleright H_0(k) = h_0.$$

For each $k \in \mathbb{T}^d$, $\sigma(H_1(k)) \cap \sigma(H_0)$ is finite.

• The scattering operator S(k) for the pair $(H_0(k), H(k))$ is unitary.

\longrightarrow S is unitary for edge states.

(Edge states are absorbed into the conducting wires)

<u>**Remark**</u> For $H_1 = H_{edge}$, H_0 can be replaced with (1 + d)-dim half-space Laplacian $\Delta_{\mathbb{Z}_+ \times \mathbb{Z}^d}$ (metal-insulator junction). Indeed, one reduces the system to the generalised Childs' graph model with $\#\mathcal{V} = 1$ for each fixed quasi-momentum $k \in \mathbb{T}^d$. Work in progress: Levinson and bulk-edge correspondence

Levinson's theorem in disordered system

Topological Levinson's theorem for periodic edge Hamiltonians can be formulated by using trace per unit volume along the boundary \mathbb{Z}^d .

 \longrightarrow Is the scattering operator S still unitary for disordered systems?

Bulk-edge correspondence via scattering theory The Chern number of the reflection coefficient $R^{\lambda+i\varepsilon}$, which also related to the scattering part of H, is equal to the bulk and edge invariants [Schulz-Baldes & Toniolo '21].

 \longrightarrow (CONJECTURE) For $\lambda \in \sigma(H_0)$, at least in K-theory level

$$S(\lambda) = R^{\lambda + i0} \qquad ?$$

Conclusion

• For fairly general class of Hamiltonians H_1 we obtained

$$(H_1, Q) \mapsto \boldsymbol{W}_{\pm}, W_{\pm}, S.$$

Topological Levinson's theorem by considering the one Hilbert space component W₋ = J^{*}W₋.

Potential applications to the bulk-edge correspondence.

References

- A. M. Childs, D. J. Strouse, Levinson's theorem for graphs, J. Math. Phys. 52 (2011).
- A. M. Childs, D. Gosset, *Levinson's theorem for graphs II*, J. Math. Phys. 52 (2012).
- H. Inoue, N. Tsuzu, Schrödinger Wave Operators on the Discrete Half-Line, Integr. Equ. Oper. Theory 91, 1-12 (2019).
- J. Kellendonk, S. Richard, *The topological meaning of Levinson's theorem*, *half-bound states included*, J. Phys. A: Math. Theo. **41**, (2008).
- H. Schulz-Baldes, D. Toniolo, Dimensional reduction and scattering formulation for even topological invariants, Commun. Math. Phys. 381, (2021).