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1. Known results for perturbed Laplacian
Let V (x) ∈ C∞

c (Rd;R) for simplicity, and P = −∆+ V . Set

B∗ =
{
ψ ∈ L2

loc(Rd)
∣∣∣ sup
ρ>0

ρ−1

∫
|x|≤ρ

|ψ(x)|2 dx <∞
}
.

For λ > 0 and ψ ∈ B∗, we define F±(λ, r)ψ ∈ L2(Sd−1) as(
F±(λ, r)ψ

)
(ω) = π−1/2λ1/4r(d−1)/2e∓iK(rω,λ)

(
R(λ± i0)ψ

)
(rω),

where r = |x|, ω ∈ Sd−1 and K(rω, λ) =
√
λ|x| − π

4 (d− 3).
K is a ‘good’ solution to the eikonal equation: |∇K|2+V −λ = 0.
Then there exist the limits

F±(λ)ψ := lim
r→∞

F±(λ, r)ψ,

and one has ‖F±(λ)ψ‖2 = 1
2πi〈ψ,

(
R(λ+ i0)−R(λ− i0)

)
ψ〉.

F±(λ) are bounded and are called stationary wave operators.
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Known results for perturbed Laplacian
The adjoints F±(λ)∗ are eigenoperators: For any ξ ∈ L2(Sd−1)

(P − λ)F±(λ)∗ξ = 0.

We also mention an application of stationary scattering theory.
Under same notations as above, it holds that

(1) For any function ξ− ∈ L2(Sd−1), there exist a function
ξ+ ∈ L2(Sd−1) and a solution ϕ of (P − λ)ϕ = 0 with asymptotic

ϕ(x)− ξ+(ω)e
i
√
λ|x| + ξ−(ω)e

−i
√
λ|x| ∈ B∗

0; (1.1)

B∗
0 =

{
ψ ∈ B∗

∣∣∣ lim
ρ→∞

ρ−1

∫
|x|≤ρ

|ψ(x)|2 dx = 0
}
.

Moreover one has ‖ξ+‖ = ‖ξ−‖.

(2) Every ϕ ∈ B∗ satisfying (P − λ)ϕ = 0 has asymptotic (1.1)
with some functions ξ± ∈ L2(Sd−1).
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2. Setting
Stark operator

We introduce a perturbed Stark operator on the Euclidean space
Rd, d ≥ 2, which is a quantum mechanical model of a charged
d-dimensional particle subject to a constant electric field and
one-body interaction q = q(·) decaying at infinity.

We split and write the coordinate of Rd as

(x, y) ∈ R× Rd−1, x = x1, y = (y2, . . . , yd),

and assume that the constant electric field points in the
x-direction. Then perturbed Stark operator is given by

H = H0 + q; H0 =
1
2p

2 − x, p = −i∇.

By Condition A introduced later, we may regard H as a
self-adjoint operator on the Hilbert space H = L2(Rd).
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Parabolic coordinates

We use a slightly modified parabolic coordinate
(f, g) = (f, g2, . . . , gd) satisfying

x = 1
2(f

2 − g2), y = fg

on a certain region.

Let f̆ ∈ C∞(R) be a convex function such that f̆(t) = 1 for
t ≤ 1/2 and f̆(t) = t for t ≥ 2. We define f ∈ C∞(Rd) as

f(x, y) = f̆(r + x)1/2; r = (x2 + y2)1/2.

The other ‘parabolic variables’ are defined as

g = f−1y, or gi = f−1yi for i = 2, . . . , d.
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Condition on q

Condition A
The perturbation q splits into two real-valued measurable functions
as q = q1 + q2 such that:

1. q1 ∈ C1(Rd), and there exist δ ∈ (0, 1] and C > 0 such that
for any |α| ≤ 1

|∂α(x,y)q1| ≤ Cf−1−δ−2|α|.

2. supp q2 is compact, and q2(−∆+ 1)−1 is a compact operator
on H.

In addition, a function ϕ ∈ L2
loc(Rd) has to be identically zero on

Rd if it satisfies

i) (H − λ)ϕ = 0 for some λ ∈ R in the distributional sense,

ii) ϕ = 0 on a non-empty open subset of Rd.
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Besov spaces

Let B = B(f), B∗ = B∗(f) and B∗
0 = B∗

0(f) be the Besov spaces
with respect to the multiplication operator by the function f , i.e.

B =
{
ψ ∈ L2

loc(Rd)
∣∣∣ ∑
n∈N0

2n/2‖Fnψ‖L2 <∞
}
,

B∗ =
{
ψ ∈ L2

loc(Rd)
∣∣∣ sup
n∈N0

2−n/2‖Fnψ‖L2 <∞
}
,

B∗
0 =

{
ψ ∈ B∗

∣∣∣ lim
n→∞

2−n/2‖Fnψ‖L2 = 0
}
,

where Fn = 1{2n≤f<2n+1} is the characteristic function of the set
specified by 2n ≤ f < 2n+1 for n ∈ N0 = N ∪ {0}.
We remark that the inclusions

L2
s ⊊ B ⊊ L2

1/2 ⊊ L2 ⊊ L2
−1/2 ⊊ B∗

0 ⊊ B∗ ⊊ L2
−s,

where L2
s = f−sL2(Rd), hold for any s > 1/2.
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WKB-approximation
Let Σ = L2(Rd−1) = L2(Rd−1

g ; dg). For any κ > 0 we let χ(· < κ)
be a smooth cut-off function χ on R such that

0 ≤ χ ≤ 1, suppχ ⊆ (−∞, κ), χ(t) = 1 for t ≤ 3κ/4.

In addition, we introduce χ⊥(· < κ) = 1− χ(· < κ).
Then for any λ ∈ R and ξ ∈ Σ we set

ϕ±λ [ξ](f, g) = ω−1
± χ⊥(f < 2)J(f, g)1/2 e±iθλ(f) ξ(±g) ∈ B∗,

where ω± = (2π)1/2e±iπd/4 and

J(f, g) = f2−d(f2 + g2)−1, θλ(f) =
1
3f

3 + λf.

J is the Jacobian associated with the coordinate change between
(x, y) and (f, g) for r + x > 2, and θλ is an approximate solution
to the eikonal equation in the sense that for g bounded

1
2 |∇θλ|

2 − x− λ = O(f−2).

10 / 26



WKB-approximation
The functions ϕ±λ [ξ] constitute WKB-approximations of solutions
to the eigenequation with purely outgoing/incoming radiation
conditions (2.1) below, respectively.

Let us introduce

∂f = 2r(∇f) · ∇, pf = −i∂f ,

B = Re pf = 2r(∇f) · p− i div(r∇f).

∂f coincide with the coordinate derivative ∂
∂f for r + x > 2,

although does not coincide with that for r + x ≤ 2.
For r + x > 2 we can see BJ1/2 = 0, and hence
the outgoing/incoming radiation conditions(

B ∓ (∂fθλ)
)
ϕ±λ [ξ] = 0, (2.1)

respectively. Moreover ϕ±λ [ξ] for ξ ∈ C∞
c (Rd−1) are approximate

generalized eigenfunctions in the sense that

ψ±
λ [ξ] := (H − λ)ϕ±λ [ξ] ∈ B.
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2. Main results
Radiation condition

In the following we always assume Condition A.
For any λ ∈ R we introduce ‘gamma observable’ as

γ(λ) = p∓∇θλ, γ̃ = f−1g

and the derived observable

γ∥(λ) = Re
(
2r(∇f) · γ(λ)

)
= B ∓ ∂fθλ,

We also refer these quantities as radiation operators.

Proposition 3.1

Let I ⊆ R be a compact interval, and let s ∈ (0, 1 + δ). Then
there exists C > 0 such that for any i, j = 1, . . . , d and any
ϕ = R(λ± i0)ψ with λ ∈ I and ψ ∈ C∞

c (Rd)

‖fsγi(λ)γj(λ)ϕ‖L2
−1/2

+ ‖f (s+2)/2γ̃2ϕ‖B∗ + ‖fsγ∥(λ)ϕ‖L2
−1/2

≤ C‖fs+2ψ‖L2
1/2
.
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Stationary wave operators

For any ψ ∈ B we introduce

R±
λ ψ(f, g) = ω±J(f, g)

−1/2e∓iθλ(f)
(
R(λ± i0)ψ

)
(f, g).

Then we expect that there exist the limits

Σ-lim
f→∞

R±
λ ψ(f, ·) := lim

f→∞
R±

λ ψ(f, ·) in Σ. (3.1)

By Proposition 3.1 we can verify the existence of the limits (3.1)
for ψ ∈ C∞

c (Rd). In the later argument and the case of ψ ∈ B, we
take the limits in the averaged sense. For any vector-valued
function η of f , let us use the notation

−
∫
ρ
η(f) df = ρ−1

∫ 2ρ

ρ
η(f) df, ρ > 0.
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Stationary wave operators

Theorem 3.2

(1) For any λ ∈ R and ψ ∈ B the following averaged limits exist,

F±(λ)ψ := ±(2πi)−1 Σ-lim
ρ→∞

−
∫
ρ
R±

λ ψ(f,±·) df.

(2) The mappings R×B 3 (λ, ψ) 7→ F±(λ)ψ ∈ Σ are continuous.

(3) For any λ ∈ R the operators F±(λ) : B → Σ are surjective.

(4) For any λ ∈ R and ψ ∈ B

‖F±(λ)ψ‖2Σ = 〈ψ, δ(H − λ)ψ〉,

where δ(H − λ) = π−1 ImR(λ+ i0).

The operators F±(λ) ∈ L(B,Σ) are called the stationary wave
operators, and their surjectivity is the stationary completeness.
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Generalized Fourier transforms

Using the stationary wave operators F±(λ) we introduce

F± =

∫ ⊕

R
F±(λ) dλ, H̃ = L2(R,dλ; Σ),

and let Mλ denote the multiplication operator by λ on H̃.

We note that F± : B 3 ψ 7→
(
F±ψ

)
(·) = F±(·)ψ ∈ C(R; Σ).

Theorem 3.3
The operators F± extend as unitary operators F± : H → H̃.
Moreover F± diagonalize H, that is,

F±H =MλF±.

In particular, H and Mλ are unitarily equivalent.
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Stationary wave matrices and Scattering matrix

The adjoints F±(λ)∗ ∈ L(Σ,B∗) are called the stationary wave
matrices. We let

Eλ = {ϕ ∈ B∗ | (H − λ)ϕ = 0},

and call the elements of Eλ minimal generalized eigenfunctions in
the sense that there are no generalized eigenfunctions in the
slightly smaller space B∗

0. Then the wave matrices
F±(λ)∗ : Σ → Eλ (⊆ B∗) are topological linear isomorphisms.
Thus F±(λ)∗ are eigenoperators of H with eigenvalue λ ∈ R.

By Theorem 3.2, we can define the stationary scattering matrix
S(λ) ∈ L(Σ) for λ ∈ R as the unitary operator obeying

F+(λ)ψ = S(λ)F−(λ)ψ for any ψ ∈ B.

We note that the mapping R 3 λ 7→ S(λ) ∈ L(Σ) is strongly
continuous. This follows from (2) of Theorem 3.2.
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Asymptotics of generalized eigenfunctions

Theorem 3.4

(1) For any one of ξ± ∈ Σ or ϕ ∈ Eλ the two other quantities in
{ξ−, ξ+, ϕ} uniquely exist such that

ϕ− ϕ+λ [ξ+]− ϕ−λ [ξ−] ∈ B∗
0. (3.2)

(2) The correspondences in (3.2) are given by the formulas

ϕ = F±(λ)∗ξ±, ξ+ = S(λ)ξ−,

ξ± = ω± Σ-lim
ρ→∞

−
∫
ρ

1
2

(
J−1/2 e∓iθλ

(
1± (f

√
2r)−1pf

)
ϕ
)
(f,±·) df.

(3) For any ξ± ∈ Σ and ϕ ∈ Eλ satisfying (3.2)

‖ξ±‖Σ = π1/2 lim
n→∞

2−n/2‖Fnϕ‖L2 .
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4. Classical mechanics version of Proposition 3.1
Consider a classical Hamiltonian for (x, y; η, ζ) ∈ T ∗Rd ∼= R2d

Hcl(x, y, η, ζ) = 1
2(η

2 + ζ2)− x+ q1(x, y). (4.1)

The associated Hamilton equations are

ẋ = η, ẏ = ζ, η̇ = 1− ∂xq1, ζ̇ = −∂yq1. (4.2)

First we let q1 ≡ 0, and then we can explicitly solve (4.2).
A solution to (4.2) with initial data (x0, y0; η0, ζ0) ∈ T ∗Rd is

x = 1
2 t

2 + tη0 + x0, y = tζ0 + y0, η = t+ η0, ζ = ζ0.

In particular we have

f − t = O(1) as t→ ∞.

This implies that we may regard the quantity f as an ‘effective
time’, which allows us to effectively rewrite time-dependent
observables by time-independent ones.
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Classical gamma observables
Moreover we have, as t→ ∞,

η − f = O(f−1), ζ − g = O(f−1), f−1g = O(f−1). (4.3)

This means that (f, g) is comparable to the momentum (η, ζ).
Let us consider the case of λ = 0, and set

γex = (η, ζ)−∇θex, γ̃ex = f−1g, γex∥ = (∇θex) · γex,

where

θex(x, y) = 4
3

√
x+ (x2 − y2)1/2

(
x− 1

2(x
2 − y2)1/2

)
; x > |y|

is an exact solution to the eikonal equation 1
2 |∇θ|

2 − x = 0.
Then by (4.3) we easily have

γex = O(f−1), γ̃ex = O(f−1),

and further

γex∥ = Hcl − 1
2(γ

ex)2 = −1
2(γ

ex)2 = O(f−2).
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Perturbed case
For simplicity, let us consider the case of zero-energy, and set

γ = γcl = (η, ζ)−∇θ0, γ̃ = γ̃cl = f−1g,

γ∥ = γcl∥ = 2r(∇f) · γcl.

Lemma 4.1
Let (x, y, η, ζ) be a zero-energy forward scattering orbit for the
perturbed Stark Hamiltonian (4.1). Then for any s ∈ (0, 1 + δ)

γ2 = O
(
f−s

)
, γ̃2 = O

(
f−(s+2)/2

)
, γ∥ = O

(
f−s

)
, (4.4)

as t→ ∞.

We remark that by the identity (holding for r + x > 2)

0 = Hcl = 1
2γ

2 + 1
2f

2r−1γ∥ +
1
4f

4r−1γ̃4 + q1, (4.5)

the bound (4.4) is sharp under Condition A.
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Proof of Lemma 4.1
We prove Lemma 4.1 without using the time parameter t as much
as possible, and then we can generalize the scheme to quantum
mechanics.
We note that x is bounded from below by conservation of energy
low, and since (x, y, η, ζ) is a scattering orbit, we may assume

f ≥ c1|g|, r + x > 2

for some c1 > 0 and for large t ≥ 0. In particular, there exists
C1 > 0 such that for large t ≥ 0

1
2f

2 ≤ r ≤ C1f
2.

By the identity

0 = Hcl = 1
2γ

2 + 1
2f

2r−1γ∥ +
1
4f

4r−1γ̃4 + q1, (4.5)

it suffices to show that

γ∥ = O(f−s).
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Proof of Lemma 4.1

To prove γ∥ = O(f−s), we compute the time-derivative of (fsγ∥)
2:

D
(
(fsγ∥)

2
)
= 2sf2s−1γ2∥(Df) + 2f2sγ∥

(
Dγ∥

)
, (4.6)

where D = d
dt , and show that this quantity is almost negative.

We bound the first term to the right of (4.6) as, by using (4.5),

2sf2s−1γ2∥(Df) = 2sf2s−1γ2∥(∇f) · (η, ζ)

= sf2s−1r−1γ3∥ + sf2s+1r−1γ2∥

≤ sf2s+1r−1γ2∥ + C2f
2s−4−δγ2∥

≤ sf2s+1r−1γ2∥ + C3f
2s−2−δγ2

≤ sfs+1r−1γ2∥ −
1
2C3f

2s−δr−1γ∥ + C4f
2s−3−2δ

≤ (s+ ϵ)f2s+1r−1γ2∥ + C5f
2s−3−2δ.

Here ϵ ∈ (0, 1− s/2) is a fixed constant.
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Proof of Lemma 4.1
Since Dγ∥ can be computed as

Dγ∥ = 2γ · (∇r∇f)γ + 1
4fg

4r−2 + 1
2f

3r−2γ∥

− fr−1γ∥ − 2r(∇f) · (∇q1),
we have the bounds

−fr−1γ∥ − C6f
−2−δ ≤ Dγ∥ ≤ C6f

−1
(
γ2 + f2γ̃4 + |γ∥|+ f−1−δ

)
.

Then the second term of (4.6) is bounded as, by using (4.5) again,

2f2sγ∥
(
Dγ∥

)
= −f2s−2r

(
2γ2 + f4r−1γ̃4

)(
Dγ∥

)
− 2q1f

2s−2r
(
Dγ∥

)
≤ f2s−1

(
2γ2 + f4r−1γ̃4

)
γ∥ + C7f

2s−2−δ
(
γ2 + f2γ̃4

)
+ C7f

2s−2−δ
(
γ2 + f2γ̃4 + |γ∥|+ f−1−δ

)
≤ −2f2s+1r−1γ2∥ + C8f

2s−2−δ
(
γ2 + f2γ̃4 + |γ∥|+ f−1−δ

)
≤ −2f2s+1r−1γ2∥ + C9f

2s−2−δ|γ∥|+ C9f
2s−3−2δ

≤ −(2− ϵ)f2s+1r−1γ2∥ + C10f
2s−3−2δ.
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Proof of Lemma 4.1
By summing up the bounds

2sf2s−1γ2∥(Df) ≤ (s+ ϵ)f2s+1r−1γ2∥ + C5f
2s−3−2δ,

2f2sγ∥
(
Dγ∥

)
≤ −(2− ϵ)f2s+1r−1γ2∥ + C10f

2s−3−2δ,

we have (noting ϵ ∈ (0, 1− s/2))

D
(
(fsγ∥)

2
)
≤ −(2− s− 2ϵ)fr−1(fsγ∥)

2 + C11f
2s−3−2δ

≤ −c2f−1
[
(fsγ∥)

2 − C12f
2s−2−2δ

]
.

(4.7)

Now let us show that (fsγ∥)
2 is bounded as t→ ∞. If not, we can

find a sequence {tn}n∈N such that

lim
n→∞

tn = ∞, (fsγ∥)
2(tn) ≥ n, D

(
(fsγ∥)

2
)
(tn) ≥ 0.

However this contradicts (4.7), since f(tn) → ∞ as n→ ∞ and
s ∈ (0, 1 + δ). Thus (fsγ∥)

2 is bounded, and hence γ∥ = O(f−s).
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Thank you for your attention.
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