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Introduction Introduction

Introduction
We consider the Cauchy problem

(NLW)


2u = F (∂u), t > 0, x ∈ R2,

u(0, x) = εf(x),

∂tu(0, x) = εg(x),
x ∈ R2.

• 2 = ∂2
t −∆ = ∂2

0 − (∂2
1 + ∂2

2), ∂u = (∂0u, ∂1u, ∂2u),

∂0 = ∂t = ∂/∂t, ∂1 = ∂/∂x1, ∂2 = ∂/∂x2.

• u = u(t, x) : R-valued unknown.

• F (∂u) : polynomial w.r.t. ∂u.

• f , g ∈ C∞
0 (R2), 0 < ε≪ 1.
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Introduction Introduction

• F ≡ 0 (free wave equation 2u = 0)

|∂u(t, x)| ≤ C(1 + t)−1/2, t ≥ 0, x ∈ R2.

∥u(t)∥E = ∥u(0)∥E, t ≥ 0.

where ∥u(t)∥2E =
1

2

∫
R2

|∂u(t, x)|2dx.

• F (∂u) = O(|∂u|p) near ∂u = 0, p > 1

p > 3 =⇒ Small Data Global Existence (SDGE) holds.
def⇐⇒ ∀f, g ∈ C∞

0 (R2), ∃ε0 > 0 s.t. 0 < ε ≤ ε0
⇒ ∃!u: global classical sol. to (NLW).
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Introduction Introduction

p = 3: one of the critical cases.

• F (∂u) = −(∂tu)3 (nonlinear damping) −→ SDGE

• F (∂u) = (∂tu)
3 −→ ∃blow-up solution

• F (∂u) = (∂tu)
3 − (∂tu)|∇xu|2 −→ SDGE

We are interested in

◦ structural conditions of F for SDGE,

◦ asymptotic behavior of the global solution u.
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Introduction Introduction

We put F (∂u) = Fq(∂u) + Fc(∂u) + Fh(∂u), where

• Fq(∂u) =
2∑

j,k=0

Bjk(∂ju)(∂ku)

• Fc(∂u) =
2∑

j,k,l=0

Cjkl(∂ju)(∂ku)(∂lu)

• Fh(∂u) = O(|∂u|4) near ∂u = 0

for Bjk, Cjkl ∈ R.

Remark

• Fq = Fc ≡ 0 =⇒ SDGE. ; We consider Fq and Fc.
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Introduction Introduction

Null condition

Fq(∂u) =
2∑

j,k=0

Bjk(∂ju)(∂ku), Fc(∂u) =
2∑

j,k,l=0

Cjkl(∂ju)(∂ku)(∂lu)

Null condition

• Quadratic null condition (QN)

def⇐⇒ Fq(ω̂) =
2∑

j,k=0

Bjkωjωk = 0 for all ω ∈ S1.

• Cubic null condition (CN)

def⇐⇒ Fc(ω̂) =
2∑

j,k,l=0

Cjklωjωkωl = 0 for all ω ∈ S1.

Here ω̂ = (ω0, ω1, ω2) = (−1, ω), ω ∈ S1.
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Introduction Known results

Godin(1993) cf. Klainerman(1986), Christodoulou(1986)

(QN) and (CN) =⇒ SDGE for (NLW).

Remarks

• Under (QN) and (CN), the solution u is asymptotically free

▶ Asymptotically free
def⇐⇒ There exists u+ = u+(t, x) satisfying

2u+ = 0 and (u+, ∂tu
+) |t=0 ∈ Ḣ1 × L2

such that lim
t→∞
∥u(t)− u+(t)∥E = 0.

• Moreover, u(t) behaves like a non-trivial free solution

as t→∞ unless f = g ≡ 0. In particular, lim
t→∞
∥u(t)∥E ̸= 0.
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Introduction Known results

Agemi condition

In what follows, we always assume (QN). ∂au ←→ ωa

Let P (ω) = Fc(ω̂). ω0 = −1, ω ∈ S1

• Fc(∂u) = −(∂tu)3 −→ P (ω) ≡ 1

• Fc(∂u) = (∂tu)
3 −→ P (ω) ≡ −1

• Fc(∂u) = (∂tu)
3 − (∂tu)|∇xu|2 −→ P (ω) ≡ 0

Agemi condition

• (A)
def⇐⇒ P (ω) ≥ 0 for all ω ∈ S1.

• (A+)
def⇐⇒ P (ω) > 0 for all ω ∈ S1.
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Introduction Known results

P (ω) =
∑2

j,k,l=0Cjklωjωkωl (A) P (ω) ≥ 0 (A+) P (ω) > 0

Hoshiga(2008), Kubo(2007)

(A) =⇒ SDGE for (NLW).

Katayama-Murotani-Sunagawa(2012)

(A+) =⇒ ∥u(t)∥E ≤
Cε

(1 + ε2 log(t+ 2))1/4−δ
,

as t→ +∞, where 0 < δ ≪ 1.
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Introduction Known results

Remark

• (A) ⇐⇒ P (ω) ≥ 0 for all ω ∈ S1 =⇒ SDGE holds.

• (CN) ⇐⇒ P (ω) = 0 for all ω ∈ S1

; ∥u(t)∥E = O(1) as t→ +∞

• (A+) ⇐⇒ P (ω) > 0 for all ω ∈ S1

; ∥u(t)∥E = O((log t)−1/4+δ) as t→ +∞

Question

Does the energy decay occur when (A) is satisfied but (CN) and

(A+) are violated?
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Main result Main result

Main result

Theorem (N.-Sunagawa-Terashita JMSJ 2021)

Assume that (QN) and (A) are satisfied but (CN) is violated.

For the global solution u to (NLW), there exist positive constants

C and λ such that

∥u(t)∥E ≤
Cε

(1 + ε2 log(t+ 2))λ

for t ≥ 0, provided that ε > 0 is sufficiently small.

The energy decay occurs when (A) is satisfied but (CN)

is violated.
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Main result Main result

Examples

The cubic nonlinear terms below are examples of Fc(∂u) which

satisfy (A) but fail to satisfy (CN): ∂au ←→ ωa

Fc(∂u) P (ω) λ

−(∂1u)2∂tu ω2
1 1/4− δ

(A) −(∂1u)2(∂tu+ ∂2u) ω2
1(1− ω2) 1/8− δ

−(∂tu+ ∂2u)
3 (1− ω2)

3 1/12− δ

(A+) −(∂tu)3 1 1/4− δ

∥u(t)∥E ≤
Cε

(1 + ε2 log(t+ 2))λ
δ > 0 : small
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Outline of the proof Proof of main Theorem

Outline of the proof

Lemma 1 (Key estimate)

Let 0 < µ < 1/10. Assume that (QN) and (A) are satisfied. If ε > 0

is suitably small, there exists a positive constant C, not depending on

ε, such that the solution u to (NLW) satisfies

|∂u(t, rω)| ≤ Cε√
t
min

{
1√

P (ω)ε2 log t
,

1

⟨t− r⟩1−µ

}

for (t, r, ω) ∈ [2,∞)× [0,∞)× S1, where r = |x|, ω = x/|x| and
⟨z⟩ = (1 + |z|2)1/2.
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Outline of the proof Proof of Key estimate

Proof of Key estimate
From Katayama-Murotani-Sunagawa, we already know

|∂u(t, rω)| ≤ Cε√
1 + t

× 1

⟨t− r⟩1−µ
, (t, r, ω) ∈ [0,∞)× [0,∞)×S1.

We set r = |x|, ω = (ω1, ω2) = x/|x| for x ∈ R2,

S := t∂t + x1∂1 + x2∂2, Lj := t∂j + xj∂t, Ω := x1∂2 − x2∂1.

Then we have

[2, S] = 22, [2, Lj] = [2,Ω] = 0, j = 1, 2.

We also set ∂r = ω1∂1 + ω2∂2 and ∂± = ∂t ± ∂r, we get

∂+ =
1

t+ r
(S + ω1L1 + ω2L2) .
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Outline of the proof Proof of Key estimate

For r ∼ t≫ 1, we get followings:

• ∂t =
1

2
(∂+ + ∂−) ∼ −−1

2
∂−, ∂r =

1

2
(∂+ − ∂−) ∼ −1

2
∂−.

• ∂1 = ω1∂r −
ω2

r
Ω ∼ −ω1

2
∂−.

• ∂2 = ω2∂r +
ω1

r
Ω ∼ −ω2

2
∂−.

D = −1

2
∂−, ω0 = −1 =⇒ ∂a ∼ ωaD, a = 0, 1, 2.

Lemma 4∣∣|x|1/2∂ϕ(t, x)− ω̂(x)D
(
|x|1/2ϕ(t, x)

)∣∣ ≤ C⟨t+ |x|⟩−1/2|Γϕ(t, x)|

for (t, x) ∈ Λ∞ = {(t, x) ∈ [0,∞)× R2; |x| ≥ t/2 ≥ 1},
where Γ = (S, L1, L2,Ω, ∂0, ∂1, ∂2).
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Outline of the proof Proof of Key estimate

We also have the relation

∂+∂−(r1/2ϕ) = r1/22ϕ+
1

4r3/2
(4Ω2 + 1)ϕ.

Now we set U(t, x) = D(r1/2u(t, x)), then we obtain

∂+U(t, x) = −P (ω)

2t
U(t, x)3 +H(t, x),

where H =
1

2

(
r1/2F (∂u)− 1

t
P (ω)U3

)
− 1

8r3/2
(4Ω2 + 1)u.

Remark

• Under (QN), H can be regarded as a remainder

|H(t, x)| ≤ Cε⟨t− r⟩−µ−1/2t2µ−3/2.

for (t, x) ∈ Λ∞,R = {(t, x) ∈ Λ∞; |x| ≤ t+R},
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Outline of the proof Proof of Key estimate

Moreover, for t ≥ 2, r ≥ 0, ω ∈ S1, we put

V (t;σ, ω) = U(t, rω)|r=t+σ and G(t;σ, ω) = H(t, rω)|r=t+σ, then

(NLW) =⇒ ∂tV (t) = −P (ω)

2t
V (t)3 +G(t).

Let (σ, ω) ∈ R× S1 be fixed, and we set Φ(t;σ, ω) = P (ω)V (t;σ, ω)2.

Then we obtain

∂tΦ(t) = 2P (ω)V (t)∂tV (t)

= −P (ω)2

t
V (t)4 + 2P (ω)V (t)G(t)

≤ −1

t
Φ(t)2 +

Cε2

t3/2−2µ⟨σ⟩3/2
,

whence we have

0 ≤ Φ(t;σ, ω) ≤ C

log t
.
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Outline of the proof Proof of Key estimate

Therefore we deduce that

|V (t;σ, ω)| ≤

√
Φ(t;σ, ω)

P (ω)
≤ C√

P (ω) log t
.

r1/2|∂u(t, rω)| ≤
√
2|V (t; r − t, ω)|+

∣∣r1/2∂u(t, rω)− ω̂U(t, rω)
∣∣

≤ C√
P (ω) log t

+
Cε

⟨t+ r⟩1−µ

for (t, rω) ∈ Λ∞,R, whence

|∂u(t, rω)| ≤ C√
rP (ω) log t

(
1 +

ε
√

P (ω) log t

t1−µ

)
≤ Cε√

t
· 1√

P (ω)ε2 log t

for (t, rω) ∈ Λ∞,R.
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Outline of the proof Proof of Key estimate

Lemma 1 (Key estimate)

For t ≥ 2, r ≥ 0, ω ∈ S1, we have

|∂u(t, rω)| ≤ Cε√
t
min

{
1√

P (ω)ε2 log t
,

1

⟨t− r⟩1−µ

}
.

By using Lemma 1, we obtain

|∂u(t, rω)| ≤ Cε√
t

(
1√

P (ω)ε2 log t

)2λ(
1

⟨t− r⟩1−µ

)1−2λ

=
Cε

(ε2 log t)λ
· 1

P (ω)λ
· 1√

t⟨t− r⟩(1−µ)(1−2λ)

for λ > 0, t ≥ 2, r ≥ 0 and ω ∈ S1,
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Outline of the proof Proof of main theorem

Proof of main theorem

• We can take R > 0 such that supp f ∪ supp g ⊂ {x ∈ R2; |x| ≤ R}.
Then, from the finite propagation property, we get

suppu(t, ·) ⊂ {x ∈ R2; |x| ≤ t+R}.

• Let ρ = (ε2 log t)
2λ

1−2µ . Then we can split

2∥u(t)∥2E =

∫
|x|≤t+R

|∂u(t, x)|2dx

=

∫
|x|≤t+R−ρ

|∂u(t, x)|2dx+

∫
t+R−ρ≤|x|≤t+R

|∂u(t, x)|2dx

=: I1 + I2.
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Outline of the proof Proof of main theorem

Estimate for I1
• By Lemma 1, we have

|∂u(t, rω)| ≤ Cε√
t⟨t− r⟩1−µ

, t ≥ 2, r ≥ 0, ω ∈ S1.

Then, for t ≥ 2, we get

I1 =

∫
|x|≤t+R−ρ

|∂u(t, x)|2dx

≤
∫ 2π

0

∫ t+R−ρ

0

Cε2

t⟨t− r⟩2−2µ
rdrdθ

≤ Cε2
∫ t+R−ρ

0

dr

(R+ t− r)2−2µ

≤ Cε2

ρ1−2µ
.

Y. Nishii (Osaka Univ.) Weakly dissipative structure March 3, 2022 21 / 28



Outline of the proof Proof of main theorem

Estimate for I2
Since we have

|∂u(t, rω)| ≤ Cε

(ε2 log t)λ
· 1

P (ω)λ
· 1√

t⟨t− r⟩(1−µ)(1−2λ)
,

for t ≥ 2, we obtain

I2 =

∫
t+R−ρ≤|x|≤t+R

|∂u(t, x)|2dx

≤ Cε2

(ε2 log t)2λ

(∫ 2π

0

dθ

P (cos θ, sin θ)2λ

)(∫ t+R

t+R−ρ

rdr

t⟨t− r⟩2(1−µ)(1−2λ)

)

≤ Cε2

(ε2 log t)2λ

(∫ 2π

0

dθ

P (cos θ, sin θ)2λ

)(∫
R

dσ

⟨σ⟩2(1−µ)(1−2λ)

)
.
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Outline of the proof Proof of main theorem

Lemma 2

Suppose that Ψ(θ) is a real-valued function on [0, 2π] which can be

written as a (finite) linear combination of the terms cosp1 θ sinp2 θ

with p1, p2 ∈ Z≥0. If Ψ(θ) ≥ 0 for all θ ∈ [0, 2π], then we have either

of the following three assertions:

(a) Ψ(θ) = 0 for all θ ∈ [0, 2π].

(b) Ψ(θ) > 0 for all θ ∈ [0, 2π].

(c) There exist positive integers m, ν1, . . . , νm, points
θ1, . . . , θm ∈ [0, 2π], and positive constants c1, . . . , cm such that

▶ Ψ(θ) > 0 for θ ∈ [0, 2π]\{θ1, . . . , θm},
▶ Ψ(θ) = (θ − θj)

2νj
(
cj + o(1)

)
as θ → θj for each j = 1, . . . ,m.
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Outline of the proof Proof of main theorem

Let Ψ(θ) = P (cos θ, sin θ). S1 ∋ ω = (cos θ, sin θ)

• P (cos θ, sin θ) ≥ 0 for all θ ∈ [0, 2π] ⇐⇒ (A)

(a) P (cos θ, sin θ) = 0 for all θ ∈ [0, 2π] ⇐⇒ (CN)

(b) P (cos θ, sin θ) > 0 for all θ ∈ [0, 2π] ⇐⇒ (A+)

(c) ▶ P (cos θ, sin θ) > 0 for θ ∈ [0, 2π]\{θ1, . . . , θm}
▶ P (cos θ, sin θ) = (θ − θj)

2νj
(
cj + o(1)

)
as θ → θj

⇐⇒ (A) ⃝, (CN)×, (A+)×.
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Outline of the proof Proof of main theorem

We focus on the case (c)

(c) ▶ P (cos θ, sin θ) > 0 for θ ∈ [0, 2π]\{θ1, . . . , θm}
▶ P (cos θ, sin θ) = (θ − θj)

2νj
(
cj + o(1)

)
as θ → θj

Lemma 3

Assume that P (cos θ, sin θ) satisfies (c). We set

ν = max{ν1, . . . , νm}. Then, for 0 < γ < 1/(2ν), we have∫ 2π

0

dθ

P (cos θ, sin θ)γ
<∞.

∵ We can take δ > 0 so small that

P (cos θ, sin θ) ≥ cj
2
(θ − θj)

2νj for θ ∈ (θj − δ, θj + δ).
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Outline of the proof Proof of main theorem

Estimate for I2
• We apply Lemma 3 with γ = 2λ,

0 < λ < 1/(4ν) =⇒
∫ 2π

0

dθ

P (cos θ, sin θ)2λ
<∞.

• With this λ, we choose

0 < µ < min

{
1

10
,
1− 4λ

2− 4λ

}
=⇒ 2(1− µ)(1− 2λ) > 1.

Then, for t ≥ 2, we obtain

I2 ≤
Cε2

(ε2 log t)2λ

(∫ 2π

0

dθ

P (cos θ, sin θ)2λ

)(∫
R

dσ

⟨σ⟩2(1−µ)(1−2λ)

)

≤ Cε2

(ε2 log t)2λ
.

Y. Nishii (Osaka Univ.) Weakly dissipative structure March 3, 2022 26 / 28



Outline of the proof Proof of main theorem

Estimate for the energy

Eventually, for t ≥ 2, we have, ρ = (ε2 log t)
2λ

1−2µ

∥u(t)∥2E ≤
Cε2

ρ1−2µ
+

Cε2

(ε2 log t)2λ
≤ Cε2

(ε2 log(t+ 2))2λ
.

On the other hands, for t ≥ 0, we get

∥u(t)∥2E ≤ Cε2
∫ t+R

0

rdr

t⟨t− r⟩2−2µ
≤ Cε2

∫
R

dσ

⟨σ⟩2−2µ
≤ Cε2.

Summing up them, we obtain

∥u(t)∥E ≤
Cε

(1 + ε2 log(t+ 2))λ

for t ≥ 0.
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Remarks Remarks on the decay rate

Remarks on the decay rate

We can take λ = 1/(4ν)− δ with arbitrarily small δ > 0, and 2ν is

the maximum of the vanishing order of zeros of P (cos θ, sin θ).

Fc(∂u) P (cos θ, sin θ) λ

−(∂1u)2∂tu cos2 θ (θ − π/2)2 + · · · 1/4− δ

(θ − 3π/2)2 + · · ·
−(∂1u)2(∂tu+ ∂2u) cos2 θ(1− sin θ) (1/2)(θ − π/2)4 + · · · 1/8− δ

2(θ − 3π/2)2 + · · ·
−(∂tu+ ∂2u)

3 (1− sin θ)3 (1/8)(θ − π/2)6 + · · · 1/12− δ
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