Positive solutions of the \mathcal{A} -Laplace equation with a potential

Yehuda Pinchover

Technion-Israel Institute of Technology Haifa, ISRAEL

> Himeji conference on PDEs Himeji, Japan (online conference)

> > March 2 – 4, 2022

Joint work with Yongjun Hou and Antti Rasila (GTIIT)

Positive solutions of the \mathcal{A} -Laplace equation with a potential

Yehuda Pinchover

Technion-Israel Institute of Technology Haifa, ISRAEL

> Himeji conference on PDEs Himeji, Japan (online conference)

> > March 2 - 4, 2022

Joint work with Yongjun Hou and Antti Rasila (GTIIT) It extends works of YP-Tintarev (2007), YP-Regev (2015), and YP-Psaradakis (2016).

Yehuda Pinchover (Technion) $-\operatorname{div} \mathcal{A}(x, \nabla v) + V(x)|v|^{\rho-2}v = 0$ March 2

Our aim

We would like to discuss some local and global properties of positive solutions of the quasilinear homogeneous equation

$$Q'_{p,\mathcal{A},V}[u] \triangleq -\operatorname{div} \mathcal{A}(x, \nabla u) + V(x)|u|^{p-2}u = 0 \qquad \text{in } \Omega,$$

where $\Omega \subseteq \mathbb{R}^n$ is a nonempty domain, and 1 , V is a given potential, and the principal part

$$\Delta_{\mathcal{A}}[u] \triangleq \operatorname{div} \mathcal{A}(x, \nabla u)$$

is the *A*-Laplacian studied in the influential book "Nonlinear potential theory of degenerate elliptic equations" by J. Heinonen, T. Kilpeläinen, and O. Martio.

The \mathcal{A} -Laplacian

Assumptions

The function $\mathcal{A}(x,\xi): \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ satisfies the following properties:

- Regularity: For a.e. x ∈ Ω, the function A(x, ξ) : ℝⁿ → ℝⁿ is continuous with respect to ξ, and the function x → A(x, ξ) is Lebesgue measurable in Ω for all ξ ∈ ℝⁿ.
- (p-1)-Homogeneity in ξ : For all $\lambda \in \mathbb{R} \setminus \{0\}$,

$$\mathcal{A}(x,\lambda\xi) = \lambda |\lambda|^{p-2} \mathcal{A}(x,\xi).$$

• Ellipticity: For all $\omega \Subset \Omega$, all $\xi \in \mathbb{R}^n$, and a.e. $x \in \omega$,

$$\alpha_{\omega}|\xi|^{p} \leq \mathcal{A}(x,\xi) \cdot \xi \leq \beta_{\omega} |\xi|^{p}.$$

• Monotonicity: For a.e. $x \in \Omega$ and all $\xi \neq \eta \in \mathbb{R}^n$,

$$(\mathcal{A}(x,\xi) - \mathcal{A}(x,\eta)) \cdot (\xi - \eta) > 0.$$

▲ 同 ▶ - ▲ 三 ▶

The A-Laplacian

Note that $|\xi|_{\mathcal{A}}^{p} \triangleq \mathcal{A}(x,\xi) \cdot \xi$ is a strictly convex function with respect to ξ . i.e.,

$$|\xi|_{\mathcal{A}}^{p}-|\eta|_{\mathcal{A}}^{p}-p\mathcal{A}(x,\eta)\cdot(\xi-\eta)>0\qquad orall\xi
eq\eta\in\mathbb{R}^{n}.$$

Lemma

For a.e. $x \in \Omega$, the function $|\xi|_{\mathcal{A}} = (\mathcal{A}(x,\xi) \cdot \xi)^{1/p}$ is a norm on \mathbb{R}^n .

The A-Laplacian

Note that $|\xi|_{\mathcal{A}}^{p} \triangleq \mathcal{A}(x,\xi) \cdot \xi$ is a strictly convex function with respect to ξ . i.e.,

$$|\xi|^{\boldsymbol{p}}_{\mathcal{A}}-|\eta|^{\boldsymbol{p}}_{\mathcal{A}}-\boldsymbol{p}\mathcal{A}(x,\eta)\cdot(\xi-\eta)>0\qquadorall\xi
eq\eta\in\mathbb{R}^n.$$

Lemma

For a.e. $x \in \Omega$, the function $|\xi|_{\mathcal{A}} = (\mathcal{A}(x,\xi)\cdot\xi)^{1/p}$ is a norm on \mathbb{R}^n .

Lemma (Generalized Hölder inequality)

Let p' be the conjugate exponent of p. For every $\xi, \eta \in \mathbb{R}^n$

$$\left|\mathcal{A}(x,\xi)\cdot\eta\right| \leq \left(\mathcal{A}(x,\xi)\cdot\xi\right)^{1/p'} \left(\mathcal{A}(x,\eta)\cdot\eta\right)^{1/p} = |\xi|_{\mathcal{A}}^{p-1}|\eta|_{\mathcal{A}}.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Local strong convexity of $|\xi|_{\mathcal{A}}^{p}$

For some results we further need to assume:

Assumption (Local strong convexity of $|\xi|_{\mathcal{A}}^{p}$)

We suppose that $|\xi|^p_{\mathcal{A}}$ is a locally strongly convex function with respect to ξ , that is, there exists $\bar{p} \ge p$ such that for every domain $\omega \Subset \Omega$ there exists a positive constant $C_{\omega}(\bar{p}, \mathcal{A})$ such that

$$|\xi|_{\mathcal{A}}^{m{p}}-|\eta|_{\mathcal{A}}^{m{p}}-m{p}\mathcal{A}(x,\eta)\cdot(\xi-\eta)\geq C_{\omega}(ar{p},\mathcal{A})|\xi-\eta|_{\mathcal{A}}^{ar{p}}\qquadorall\xi,\eta\in\mathbb{R}^{n}.$$

5 / 27

(p, A)-Laplacian

Example

 For a symmetric, locally bounded, and locally uniformly positive definite matrix function A(x) defined on Ω, the operator

$$\Delta_{p,A}[u] = \mathsf{div}(|\nabla u|_A^{p-2}A\nabla u)$$

is called the (p, A)-Laplacian, where $|\xi|_A = \sqrt{A\xi \cdot \xi}$.

• If A is the identity matrix, then

$$\Delta_p[u] = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$$

is the celebrated *p*-Laplacian.

(p, A)-Laplacian - local strong convexity

Lemma (Pinchover-Tintarev (2007))

For the (p, A)-Laplacian and in particular, for the *p*-Laplacian, there exists a constant C(p) > 0 such that for all $\xi, \eta \in \mathbb{R}^n$ ($\eta \neq 0$ if p < 2) and a.e. $x \in \Omega$,

$$|\xi|_{\mathcal{A}}^{p}-|\eta|_{\mathcal{A}}^{p}-p|\eta|_{\mathcal{A}}^{p-2}\eta\cdot(\xi-\eta)\geq C(p)[\xi,\eta]_{p,\mathcal{A}},$$

where

$$[\xi, \eta]_{p,A} \triangleq \begin{cases} |\xi - \eta|_A^p & \text{if } p \ge 2, \\ |\xi - \eta|_A^2 (|\xi|_A + |\eta|_A)^{p-2} & \text{if } 1$$

 $-\operatorname{div} \mathcal{A}(x, \nabla v) + V(x)|v|^{p-2}v = 0$

Pseudo-p-Laplacian

Example

Let $p \ge 2$ and $a_i \asymp 1$ locally in Ω , for all i = 1, 2, ..., n, Consider $\mathcal{A}(x,\xi) = (a_1(x)|\xi_1|^{p-2}\xi_1, ..., a_n(x)|\xi_n|^{p-2}\xi_n)$. For a.e. $x \in \Omega$ and every $\xi = (\xi_1, ..., \xi_n) \in \mathbb{R}^n$, we have (1) $|\xi|_{\mathcal{A}}^p = \sum_{i=1}^n a_i(x)|\xi_i|^p$, (2) the operator \mathcal{A} satisfies the basic assumptions above, and the local strong convexity.

Definition (Pseudo-p-Laplacian)

If $a_i = 1$ for all i = 1, 2, ..., n, then the corresponding operator

$$\tilde{\Delta}_p[u] = \sum_{i=1}^n \partial_i (|\partial_i u|^{p-2} \partial_i u)$$

is called the *pseudo-p-Laplacian* studied by Francoise Demengel and others.

Morrey potentials

Definition

For every domain $\omega \Subset \Omega$, $M^q(p; \omega)$ is a Morrey space with $q = q(p, n) \in [1, \infty]$. Furthermore, $M^q_{loc}(p; \Omega) \triangleq \bigcap_{\omega \Subset \Omega} M^q(p; \omega)$, which is called the local Morrey space.

Remark

1.
$$L^q_{\mathrm{loc}}(\Omega) \subseteq M^q_{\mathrm{loc}}(p;\Omega) \subseteq L^1_{\mathrm{loc}}(\Omega).$$

2. We assume that the potential V satisfies $V \in M^q_{loc}(p; \Omega)$.

Yehuda Pinchover (Technion) $-\operatorname{div} \mathcal{A}(x, \nabla v) + V(x)|v|^{p-2}v = 0$

Morrey-Adams theorem

The following key estimates assert that $\int_{\omega} |V| |u|^p dx$ has zero relative bound with respect to the *p*-Laplacian.

Theorem (Morrey-Adams estimate)

Let $\omega \in \mathbb{R}^n$ be a domain and $V \in M^q(p; \omega)$.

(1) There exists a constant C(n, p, q) > 0 such that for any $\delta > 0$ and all $u \in W_0^{1,p}(\omega)$,

$$\int_{\omega} |V| |u|^p \, \mathrm{d}x \le \delta \|\nabla u\|_{L^p(\omega;\mathbb{R}^n)}^p + \frac{C(n,p,q)}{\delta^{n/(pq-n)}} \|V\|_{M^q(p;\omega)}^{pq/(pq-n)} \|u\|_{L^p(\omega)}^p.$$

(2) For any $\omega' \Subset \omega$ with Lipschitz boundary, there exists δ_0 such that for any $0 < \delta \le \delta_0$ and all $u \in W^{1,p}(\omega')$, with $C = C(n,p,q,\omega',\omega,\delta, ||V||_{M^q(p;\omega)})$,

$$\int_{\omega'} |V| |u|^p \, \mathrm{d}x \le \delta \|\nabla u\|_{L^p(\omega';\mathbb{R}^n)}^p + C \|u\|_{L^p(\omega')}^p.$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The variational functional $Q_{p,\mathcal{A},V}[\varphi;\omega]$

Notation

For a domain $\omega \subseteq \Omega$ and $\varphi \in W^{1,p}_c(\omega)$, let

$$Q^{\omega}_{\rho,\mathcal{A},V}[\varphi] \triangleq \int_{\omega} \left(|\nabla \varphi|^{\rho}_{\mathcal{A}} + V|\varphi|^{\rho} \right) \mathrm{d}x.$$

Definition

The functional $Q_{p,\mathcal{A},V}^{\Omega}$ is said to be nonnegative in Ω if $Q_{p,\mathcal{A},V}^{\Omega}[\varphi] \ge 0$ for all $\varphi \in W_c^{1,p}(\Omega)$.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

Definition (A-Laplace equation with Morrey potential)

Let $g \in L^1_{loc}(\Omega)$. $v \in W^{1,p}_{loc}(\Omega)$ is a (weak) solution of the equation $Q'_{p,\mathcal{A},V}[v] \triangleq -\operatorname{div} \mathcal{A}(x,\nabla v) + V|v|^{p-2}v = g,$

in Ω if for all $\varphi \in C^\infty_c(\Omega)$,

$$\int_{\Omega} \mathcal{A}(x, \nabla v) \cdot \nabla \varphi \, \mathrm{d}x + \int_{\Omega} V |v|^{p-2} v \varphi \, \mathrm{d}x = \int_{\Omega} g \varphi \, \mathrm{d}x,$$

and a supersolution of $Q'_{p,\mathcal{A},V}[u] = g$ in Ω , if for all $0 \leq \varphi \in C^\infty_c(\Omega)$,

$$\int_{\Omega} \mathcal{A}(x, \nabla v) \cdot \nabla \varphi \, \mathrm{d}x + \int_{\Omega} V |v|^{p-2} v \varphi \, \mathrm{d}x \ge \int_{\Omega} g \varphi \, \mathrm{d}x.$$

A supersolution $v \in W^{1,p}_{loc}(\Omega)$ of the equation is said to be proper if v is not a solution.

Harnack inequality & Hölder continuity

Theorem

Let $V \in M^q_{loc}(p; \Omega)$. Let v be a nonnegative solution v of $Q'_{p,\mathcal{A},V}[u] = 0$ in a domain $\omega \subseteq \Omega$. Then for any $\omega' \subseteq \omega$,

$$\sup_{\omega'} v \leq C \inf_{\omega'} v,$$

where C is a positive constant depending only on $n, p, q, \omega', \omega, \alpha_{\omega}, \beta_{\omega}$, and $\|V\|_{M^q(p;\omega)}$ (but not on v). Moreover, solutions of such equation satisfies local Hölder estimates. In particular, the Harnack convergence principle holds true.

Generalized principal eigenvalue

Definition

The generalized principal eigenvalue of $Q'_{p,\mathcal{A},V}$ in a domain $\omega \subseteq \Omega$ is defind by

$$\lambda_{1} = \lambda_{1}(Q_{p,\mathcal{A},V}^{\omega}) \triangleq \inf_{u \in W_{c}^{1,p}(\omega) \setminus \{0\}} \frac{Q_{p,\mathcal{A},V}^{\omega}[u]}{\|u\|_{L^{p}(\omega)}^{p}}$$

Generalized principal eigenvalue

Definition

The generalized principal eigenvalue of $Q'_{p,\mathcal{A},V}$ in a domain $\omega \subseteq \Omega$ is defind by

$$\lambda_1 = \lambda_1(Q^{\omega}_{\rho,\mathcal{A},V}) \triangleq \inf_{u \in W^{1,p}_c(\omega) \setminus \{0\}} \frac{Q^{\omega}_{\rho,\mathcal{A},V}[u]}{\|u\|_{L^p(\omega)}^p}$$

Remark

It follows that for a domain $\omega \Subset \Omega$ we have $\lambda_1(Q_{\rho,\mathcal{A},V}^{\omega}) = \inf_{u \in W_0^{1,p}(\omega) \setminus \{0\}} \frac{Q_{\rho,\mathcal{A},V}^{\omega}[u]}{\|u\|_{L^p(\omega)}^p}.$

 $-\operatorname{div} \mathcal{A}(x, \nabla v) + V(x)|v|^{p-2}v = 0$

Principal eigenvalue of $Q'_{p,\mathcal{A},V}$

Definition

Let $\omega \Subset \Omega$ be a domain and $V \in M^q(p; \omega)$. A real number λ is called an eigenvalue with an eigenfunction v of the Dirichlet eigenvalue problem

$$\begin{cases} Q'_{p,\mathcal{A},V}[w] = \lambda |w|^{p-2} w & \text{in } \omega, \\ w = 0 & \text{on } \partial \omega, \end{cases}$$

if $v \in W^{1,p}_0(\omega) \setminus \{0\}$ satisfies the above equation in the weak sense.

A principal eigenfunction is a nonnegative eigenfunction associated to a principal eigenvalue.

Principal eigenvalue of $Q'_{p,\mathcal{A},V}$ in bounded domains

Theorem

Let $\omega \Subset \Omega$ be a bounded subdomain. Then

(1) the generalized principal eigenvalue $\lambda_1(Q^{\omega}_{p,\mathcal{A},V})$ is the unique principal eigenvalue of the operator $Q'_{p,\mathcal{A},V}$,

(2) the principal eigenvalue is simple.

16 / 27

Generalized weak/strong maximum principle

Definition

Let $\omega \Subset \Omega$ be a Lipschitz domain.

- The operator $Q'_{p,\mathcal{A},V}$ is said to satisfy the generalized weak maximum principle in ω if every supersolution v of the equation $Q'_{p,\mathcal{A},V}[u] = g$ in ω with $0 \le g \in L^{p'}(\omega)$ and $v \ge 0$ on $\partial \omega$ is nonnegative in ω ;
- the operator $Q'_{p,\mathcal{A},V}$ satisfies the generalized strong maximum principle in ω if any such a supersolution v is either the zero function or strictly positive in ω .

Theorem

Let $\omega \Subset \Omega$ be a Lipschitz subdomain. Then TFAAE:

- (1) The operator $Q'_{p,\mathcal{A},V}$ satisfies the generalized weak/strong maximum principle in ω .
- (2) The principal eigenvalue $\lambda_1 = \lambda_1(Q_{p,\mathcal{A},V};\omega)$ is positive.
- (3) The equation $Q'_{p,\mathcal{A},V}[u] = 0$ has a proper positive supersolution in $W^{1,p}_0(\omega)$.
- (3') The equation $Q'_{p,\mathcal{A},V}[u] = 0$ has a proper positive supersolution in $W^{1,p}(\omega)$.
- (4) For any nonnegative g ∈ L^{p'}(ω), there exists a nonnegative solution, which is either zero or positive, of the equation Q'_{p,A,V}[u] = g in W₀^{1,p}(ω).

Moreover, if the local strong convexity is satisfied, then the solution in (4) is unique.

3

イロト 人間ト イヨト イヨト

Agmon-Allegretto-Piepenbrink (AAP) type theorem

Theorem (AAP type theorem)

The following three assertions are equivalent:

(1) the functional $Q_{p,\mathcal{A},V}^{\Omega}$ is nonnegative in Ω ;

(2) the equation $Q'_{p,\mathcal{A},V}[w] = 0$ admits a positive solution $v \in W^{1,p}_{loc}(\Omega)$;

(3) the equation Q'_{p,A,V}[w] = 0 admits a positive supersolution ṽ ∈ W^{1,p}_{loc}(Ω).

Criticality/subcriticality

Definition

• If there exists a nonnegative function $W \in M^q_{loc}(p;\Omega) \setminus \{0\}$ such that

$$Q^{\Omega}_{\boldsymbol{p},\mathcal{A},\boldsymbol{V}}[\varphi] \ge \int_{\Omega} W |\varphi|^{\boldsymbol{p}} \,\mathrm{d}x,$$

for all $\varphi \in C_c^{\infty}(\Omega)$, we say that the functional $Q_{p,\mathcal{A},V}^{\Omega}$ is subcritical in Ω , and W is a Hardy-weight for $Q_{p,\mathcal{A},V}^{\Omega}$ in Ω ;

- if Q^Ω_{p,A,V} is nonnegative in Ω but Q^Ω_{p,A,V} does not admit a Hardy-weight in Ω, we say that the functional Q^Ω_{p,A,V} is critical in Ω;
- if $Q^{\Omega}_{p,\mathcal{A},V}$ is not nonnegative in Ω , we say that the functional $Q^{\Omega}_{p,\mathcal{A},V}$ is supercritical in Ω .

Null-sequences and ground states

Definition

A nonnegative sequence $\{u_k\}_{k\in\mathbb{N}} \subseteq C_c^{\infty}(\Omega)$ is called a null-sequence with respect to the nonnegative functional $Q_{p,\mathcal{A},V}^{\Omega}$ if

there exists a fixed open set U ∈ Ω such that ||u_k||_{L^p(U)} = 1 for all k ∈ N;

• and
$$\lim_{k\to\infty} Q^{\Omega}_{p,\mathcal{A},V}[u_k] = 0.$$

Definition

A ground state of the nonnegative functional $Q^{\Omega}_{p,\mathcal{A},V}$ is a positive function $\phi \in W^{1,p}_{loc}(\Omega)$, which is an $L^{p}_{loc}(\Omega)$ limit of a null-sequence.

 (\mathcal{A}, V) -capacity

Definition

Assume that the functional $Q_{p,\mathcal{A},V}^{\Omega}$ is nonnegative in Ω). For every compact subset K of Ω , we define the (\mathcal{A}, V) -capacity of K in Ω as

$$\mathsf{Cap}_{\mathcal{A},V}(\mathcal{K},\Omega) riangleq \inf \left\{ Q^\Omega_{p,\mathcal{A},V}[arphi] \mid arphi \in \mathit{C}^\infty_c(\Omega), arphi \geq 1 ext{ on } \mathcal{K}
ight\}.$$

Yehuda Pinchover (Technion) $-\operatorname{div} \mathcal{A}(x, \nabla v) + V(x)|v|^{p-2}v = 0$ March 2 – 4, 2022 22 / 27

Positive solution of minimal growth

Theorem

Let $x_0 \in \Omega$. If $Q_{p,\mathcal{A},V}^{\Omega} \geq 0$ in Ω , then there exists a positive solution u_{x_0} of the equation $Q'_{p,\mathcal{A},V}[w] = 0$ in $\Omega \setminus \{x_0\}$ that has minimal growth in a neighborhood of infinity in Ω , i.e. for any smooth compact subset $K \Subset \Omega$ with $\{x_0\} \in \mathring{K}$, any positive supersolution v of $Q'_{p,\mathcal{A},V}[w] = 0$ in $\Omega \setminus K$ such that $u_{x_0} \leq v$ on ∂K , satisfies $u \leq v$ in $\Omega \setminus K$.

23 / 27

Characterizations of criticality

Theorem

Let A satisfy the local strong convexity and the functional $Q_{p,A,V}^{\Omega}$ be nonnegative in Ω . Then TFAAE:

- the functional $Q_{p,\mathcal{A},V}^{\Omega}$ is critical in Ω ;
- the functional $Q_{p,\mathcal{A},V}^{\Omega}$ has a null-sequence in $C_c^{\infty}(\Omega)$ converging locally uniformly to a ground state;
- the functional $Q_{p,\mathcal{A},V}^{\Omega}$ has a ground state;
- the equation $Q'_{p,\mathcal{A},V}[u] = 0$ has a unique positive supersolution;
- $\operatorname{Cap}_{\mathcal{A},V}(B,\Omega) = 0$ of all closed balls $B \Subset \Omega$;
- u_{x_0} has a removable singularity. u_{x_0} is called the global minimal positive solution in Ω .

Removability of isolated singularity

Theorem

Let $p \leq n$ and $x_0 \in \Omega$. Consider a positive solution u of $Q'_{p,\mathcal{A},V}[w] = 0$ in a punctured neighborhood of x_0 .

- (1) If u is bounded in some punctured neighborhood of x_0 , then u can be extended to a nonnegative solution in Ω .
- (2) Otherwise, $\lim_{x\to x_0} u(x) = \infty$.

25 / 27

Minimal positive Green functions

Definition

 u_{x_0} is called a minimal positive Green function of $Q'_{p,\mathcal{A},V}$ in Ω with singularity at x_0 , if u_{x_0} admits a nonremovable singularity at x_0 . We denote such a Green function by $G^{\Omega}_{\mathcal{A},V}(x,x_0)$.

Minimal positive Green functions

Definition

 u_{x_0} is called a minimal positive Green function of $Q'_{p,\mathcal{A},V}$ in Ω with singularity at x_0 , if u_{x_0} admits a nonremovable singularity at x_0 . We denote such a Green function by $G^{\Omega}_{\mathcal{A},V}(x,x_0)$.

Theorem

Let \mathcal{A} satisfy the local strong convexity, and $Q_{p,\mathcal{A},V}^{\Omega} \geq 0$ in Ω .

- (1) If $p \leq n$, and $Q'_{p,\mathcal{A},V}$ admits a minimal positive Green function in Ω , then $Q^{\Omega}_{p,\mathcal{A},V}$ is subcritical in Ω .
- (2) If p > n, and $Q'_{p,A,V}$ admits a minimal positive Green function in Ω with singularity at some point $x_0 \in \Omega$ s.t.

 $\lim_{x \to x_0} G^{\Omega}_{\mathcal{A},V}(x,x_0) = c \qquad \textit{for some positive constant } c,$

then $Q_{p,\mathcal{A},V}^{\Omega}$ is subcritical in Ω .

Thank you for your attention!

Yehuda Pinchover (Technion)

 $-\operatorname{div} \mathcal{A}(x, \nabla v) + V(x)|v|^{p-2}v = 0$

March 2 – 4, 2022 27 / 27

3

4 E b

A 1