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This talk is based on the following papers:

e S. Nakamura, Y. T.: On a continuum limit of discrete Schrodinger

operators on square lattice. Journal of Spectral Theory 11 (2021), no.
1, 355-367.

@ P. Exner, S. Nakamura, Y. T.: Continuum limit of the lattice quantum
graph Hamiltonian. Preprint arXiv:2202.06586.

2/25



@ Discrete Schrodinger operators on hZY
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Definition of H and H,,

Schrodinger operators
H=Hy+V=-A+V(z) onH=L*R").

Square lattice with width A > 0
For v € Ho = 2(hZ¥), v=1,2,---, h >0, V: R’ > R,

Hov(z) = (Hao + V)u(z) = —Agqu(z) + V(2)v(z), =z € hZ”,

where Agv(z) = % D jw—zj=h V(W) —v(2)).

v 1
Hs is equipped with the norm ||v|ls = hz (3, oz [0(2)]?) 2.
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Known results, motivation

Remark  Since

u(z £ hej) = u(z) £ h0y;u(z) + %28§ju(z) + %38§ju(z) + O(h%)
by Taylor's theorem, we formally have Agu(z) = Au(z) + O(h?).
Previous results  Exner-Hejcik-Seba (2006), Rabinovich (2013),
Hong-Yang (2019), Kirkpatrick-Lenzmann-Staffilani (2013),
Bogli-Siegl-Tretter (2017), Strauss (2014).
Related works ~ Cornean-Garde-Jensen (2021), Isozaki-Jensen (2022).

Motivation ~ Asymptotics of Hy from the view point of spectral theory,
e.g. eigenvalues, eigenfunctions, and their converging speed.

5/25



We choose a suitable P : # — Hs such that P*(Hs — 1) "1 P converges to
(H — p)~! as h — 0 in the operator norm topology (generalized norm
resolvent convergence in the textbook of Weidmann (2000)).

Hy —2 94,

al |~

H —— H
H
Furthermore, we expect P to induce a partial isometry, that is,

P*:Hy—H, Vh>O0.
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Our formulation

Let ¢ € S(R¥), and then P = P, : L — M is defined by
Pu(z) := hd/ o(h=1(z — 2))u(z)dx, h >0, z € hZ".

Its adjoint is

Po(x)= Y ph ™z —2)u(z), h>0, veH,.
zEhZY

P* is isometric. < > . [@(€ +n)[* =1 for £ € RY, where

2(6) = Fol6) = / 2T () .

v

The proof is given by‘the Plancherel identity and
Flo(-+n)](€) = ™4 p(€).
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Main result

Theorem 1 (Nakamura-T., Journal of Spectral Theory, 2021)

Let ¢ € S(R¥) be fixed so that Y, ;. [4(£ +n)|* =1 and |¢(0)] = 1.
Assume that

(1)y V is bounded from below.

(2)y (V(z) + M)~ is uniformly continuous (M := — infyepv V(2) + 1).
(3)v V is slowly varying, i.e. supj,_, <1 % < 0.

Then, for any u € C\R,

|P*(Hy — ) ™' P — (H — p) " llgze) = 0,
IP(H — 1)~ P* — (Hy — 1) || g(34) = O

as h — 0.
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e If V is smooth, (3)y is equivalent to [VV (x)| < C(V(x) + M).
@ Theorem 1 is valid for V(z) = |z|* and V() = e®*l, a > 0.
o If we set ¢ € C° ((—1,1)"), we obtain

V=0= ||| =0,
(V(z)—M)te C¥WRY) = ||---|| = O(h?™5), Ve>o0.
® We may choose ¢ = x(_1 1), & S(R”), but the converging speed can

be slower than the above case
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Application

The argument in the Reed-Simon textbook implies

Corollary 1

Under the assumption of the above theorem,
(1) Let a,b e R\ 0(H), a < b. Then a,b ¢ o(Ha) for sufficiently small i
and

| P*Em,((a,b))P — Eg((a,b))llsay — 0, h—0.

(2) Let dy(X,Y) = max {sup,cx d(z,Y),sup,cy d(y, X)} be the
Hausdorff distance. Then

dy (o((Hy + M), 0((H+M)™ ")) -0, h—0.

Each converging speed equals to that of Theorem 1.
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Key lemmas

Lemma 2 (Regularity of P)

|(1 — P*P)(Ho — p)"*|ls2y — 0 as b — 0 for any € C\ R.

Lemma 3 (Convergence of unperturbed operators and potentials)

(1) [[(Ha,0 — p) 1P — P(Ho — 1) | 5(34,245) — 0 holds.
2 Wy, Qv = (V=p)'P =PV — p) " |Ba,32) = O-

Lemma 4 (Relative boundedness)

(Dv, B)v
= ||Ho(H — p)7'|| < oo, [V(H—p)7'|| < o0,
SUPhe (0,1 |1 H2,0(Ha — 1) 71| < 00, suppe(o) IV (Ha — p) 71| < oc.

.
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Proof of Theorem 1

We compute

P*(Hy —p)"'P— (H — )"
= P*(Hy —p)"'P—P*P(H —p) ™ = (1= P*P)(H — )"
= P*(Hy — p) Y (PH — HyP)(H — 1) = (1 = P*P)(H — p)~ L.

The second term is estimated by Lemmas 2 and 4:

I(1 = P*P)(H — )7
<11 = P*P)(Ho — p) "Ml (Ho — o) (H — ) 7"
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Proof of Theorem 1

For the first term, we have by triangle inequality and Lemma 4 that

(P~ P — |
< ||(H2 — )" " (PHo — Hy0P)(H — p1) 7|
+||(Hz = )" (PV = VP)(H — p) ||
< C||(Ha,0 — 1)~ Y(PHy — Ha0P)(Hy —
+C||(V = p) NPV = VP)(V — p) w
= O||(Hzo — p)~'P = P(Ho — 1) ']
+O|(V =) P = P(V = p)~t],

w7

which tends to 0 by Lemma 3.
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© Schrodinger operators on quantum graphs
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Hilbert space on Quantum graph

We set
L={Ljyn=1j,n]|j,nehl |j—n|=h},

where [j,n] is the line segment connecting j and n. We define

= @ L)

Lin€L

with the norm

hul
loll? = Z/ o) Pt

Lin€l

for ¢ = (pjn) € Hi. We also set

HY(L) = {(pjn) € H1 | @jn € H'([7,1)); 0jn(§) = ¢jm(j) for any
j € hZ” and n,m : neiborhood of j}
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Quantum graph Hamiltonian

Let V' : R¥ — R be bounded from below, and denote V; = V (j) for
j € hZV. For o, € HY(L), we define

(‘P ¢) Z hVJ%%,

JjERZY

where (¢')jn(t) = Grpjn(t) and @; = @jn(j).
Let H; be the corresponding selfadjoint operator. Then we have

D) = {y € SH*(Lyn) NH'(L)] 3 5 () = PVvs},
lj—nl=h

(H1)jn(t) = =45, (1)
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Main theorem 2

Theorem 2 (Exner-Nakamura-T., arXiv2202.06586)

Under the same assumption of V' as Theorem 1, there is a bounded
operator ¥ : H; — H = L?(RY) such that for any u € C\R,

I(H = )™ = O (vHy — )~ 0530 — O,
I(vHy = )™t = O (H — )" ¥ 534,) — 0

as h — 0.

Theorem 2 implies a similar corollary on approximation of eigenvalues and
eigenfunctions, i.e.

1EH((a,b)) = VEq, ((a,0)) V(|53 — 0 (ifa,b ¢ o(H)),
dn (o((H — M), 0((Hy — M)™1)) — 0.
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Proof of Theorem 2

Let 1 :Ho — H1, ¢ = (¢;) = I = (pjn), be the linear interpolation, i.e.

where z(t) = (1 —t)j + tn.
In the following, we prove

For any u € C\R,

I(Hz — )™ = I*(vHy — )" || g(as) = O(h),
I(vHy = p)™" = I(Ha = 1) "' I ||,y = O(h).

-1
Hy (H2—p) Ho

r| |1
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Proof of Theorem 2

Combining Theorems 1 and 3, we immediately obtain Theorem 2 with
U .= P*I*, B
Hi W, Hi

Tl

-1
(Hz—p) Hoy

P lp*
H —— H
(H—p)~*
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Proof of Theorem 3

We employ the argument by Exner (1997) and Exner-Hejcik-Seba (2006)
to find the relation between (Hy — p)~! and (Hy — )~
We set the trace operator K : H'(L) — Ha by

K¢ = (pjn) = (Kp)j = pjn(J)

We have

K(Hy —p) ' = (Hy — p+ M)~ (1+ M) ™!
with some (Hy — )~ 'M; = O(h?), j =1, 2.

This implies K(Hy — p) =11 = (Hy — )1 + O(h?). Finally Theorem 3 is
proved by D(Hl) C Hl(ﬁ) and HK — I*HB(Hl(E),’Hz) = O(h)
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Proof of Lemma 5

It suffices to show that
(Hy — k*) = I, (1)

Y € D(Hy), ¢ € Ha, k% ¢ R implies (Hy — k? + M) K+ = (1 + Mo)p.
We easily see from (1) that for each jn

- ¢;/n - k2¢jn = @jn on Lijn, (2)
where (pj,) = I, i.e.
T x X
Sojn(aj) =(1- E)Soj + ﬁ%on =@j+ E(Son - Soj)7 r € [0,h] = Lin.

(2) with boundary condition 1, (0) = v; and 1, (h) = 1, is solved by the
standard ODE calculus:
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Proof of Lemma 5

_ sin(kx) sin(k(h —z)) =
Vinl®) = Gateny Y T simeRy.
1 sin(kz) = 1 sin(k(h — x)) x
2Zomen R TR e LR
In particular,
_k \ , k(1 —cos(kh))) -
_snmkh)(¢”'_d”)*' sin(kh) Vi

i i(L _ l)(@ — o)+ MW‘-
k2 sin(kh) R T ksin(kh) 7’
Substituting this for the boundary condition
> Winld) = hVidy,
lj—n|=h
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Proof of Lemma 5

we have for any j,

sin(kh cos(kh
- > ) Vi — ety
sin(kh) — kh 1 — cos(kh)
- W |n§:h(<ﬁn — ;) VW%’-
Let
(tr); = v NG - Vi - RS - 1,

(Mw%:ﬂmwﬁggM’ZIWVWW+&&ﬁﬁ?—UW

In 31—
Then we have (HQ -k + MﬂKlﬂ = (1 + MQ)QO.
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Proof of Lemma 5

Taking into account the Taylor series expansion of Sink(}’fh). 1ch;;2(7£z) and

W (all of them are 1 + O(h?)), we see that

(Hy — k*)"'M,,, = O(h?), m=1,2.
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Thank you for your attention!

References:

e S. Nakamura, Y. T.: On a continuum limit of discrete Schrodinger

operators on square lattice. Journal of Spectral Theory 11 (2021), no.
1, 355-367.

@ P. Exner, S. Nakamura, Y. T.: Continuum limit of the lattice quantum
graph Hamiltonian. Preprint arXiv:2202.06586.
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Appendix: Proof of Lemma 3 (1)

We recall that Fu(§) = [, e 2™ Cu(x)dzr, and denote the discrete
Fourier transform
F:Hy — Ho = L*(h71TY), T=R/Z,
by
v(¢) = h" Z eI Cy(2), ¢ ehTITv.
zEhZV
Then we have Hy = F*Hy(-)F and Ha o = F*Hyo(-)F, where

Hy(€) =[2n¢]?, €€RY,
Hy0(¢) =207 (1 — cos(27h(;))

j=1
=4h™? “sin®(nh¢;), ¢ € b
j=1
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Momentum representation

Now we set Q := Fj, P, F*.

F (Ho,0—p)~ 1t F* ~

7:[2 HQ < 7‘[2

H = L*(RY) S
F (Ho—p)~1 F

Then we have

Lemma 6 (Representation of Q)

ForfE'l-landgE?—A[z,

QF(Q)=>_ e(C+n)f(C+h'n), ¢eh'T,

nezv

Q7g(§) =p(h€)g(§), £ R,

where g is the periodic extension of g on R”.

a1 e
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Proof of |[(Hzo — u)™' P — P(Ho — 1)l 53, — 0

Proof  Since P*: isometric and F, F: unitary, we have
[(Hao = 1) ™' P = P(Ho — ) ~"|
= ||P*(Hao — p)~'P — P*P(Ho — )|
= | Q" (Ha0() — 1) 7' Q — Q" Q(Ho(: ) w -
Then we compute, for f € S(RY),

(@1 (Hon(: ) )71Qh — QhQn(Ho(-) — )" f(©)
= Y P(hE)G(hE + n)Bu(& + b~ n) f(€ + b n),

nezv

where By, (€) := (Hop(€) — p)~" = (Ho(§) —p) "
In the following, we decompose RHS into n = 0 part and n # 0 part.
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Estimates of G(h&)p(hE +n)Bp(E+ h~n) f(€ + h™1n)

We compute [|2(h)[*Bu.fllz < ll&(h)* Bl f]l 5 and

/\w he) " GURE + n)g(€ + h-tn) e
n#0

/|soh£| S 1(h + )2 S g€+ h i) Pde

n#0 n#0

/Isohé (1= [p(hE)) S g€ + hm) P
n#0

/Zw he — n) (1 — |G(he — n))|g(6)|2de
n#0

/1—rso RO — 3 Ip(he — n)[H)lg(€) e,
n#0

with g := Bi,(-) /(")
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Estimates of G(h&)p(hE +n)Bp(E+ h~n) f(€ + h™1n)

Therefore the proof is completed if we check

11¢(h)[* Byl Lo — 0,

11 = [@(h)]> = 3 |@(h - —n)|")2 Byl — 0.
n#0

However this claim holds since
Bi(§) = (Hz0(§) —p) ™" = (Ho(§) —p) ™' = 0

as h — 0 if dist(¢, h71Z \ {0}) — oo, while [¢(0)| = 1 implies both
[G(hE)] = (1 = 32,40 [@(h€ — n)[*)2 and
L= |p(h&)? = 3, 40 [¢(h€ — n)[* vanish on h=1Z"\ {0}

30/25



	Discrete Schrodinger operators on hZ
	Schrodinger operators on quantum graphs
	Appendix

