Horinzontal quasiconvex envelope in the Heisenberg group

Himeji Conference on Partial Differential Equations March 2, 2022

Xiaodan Zhou Joint work with Antoni Kijowski and Qing Liu

沖繩科学技術大学院大学

Outline

• Notions of convexity in the Heisenberg group $\mathbb{H};$

• Quasiconvex envelope contruction through 1st-order non-local Hamilton-Jacobi equation;

• Obtaining horizontal convex hull of a given set via constructing the quasiconvex envelope of a function.

The Heisenberg group \mathbb{H}

The Heisenberg group \mathbb{H} is \mathbb{R}^3 endowed with non-commutative group multiplication for all $p = (x_p, y_p, z_p)$ and $q = (x_q, y_q, z_q)$

$$(x_{\rho},y_{\rho},z_{\rho})\cdot(x_q,y_q,z_q)=\left(x_{\rho}+x_q,y_{\rho}+y_q,z_{\rho}+z_q+\frac{1}{2}(x_{\rho}y_q-x_qy_{\rho})\right).$$

The Lie Algebra of $\mathbb H$ is generated by the left-invariant vector fields

$$X_1(p) = \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial z}$$
$$X_2(p) = \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial z}$$

Note $X_1X_2 \neq X_2X_1$. The horizontal gradient of $u : \mathbb{H} \to \mathbb{R}$ are given by $\nabla_H u = (X_1u, X_2u)$.

Horizontal planes and various metrics in $\ensuremath{\mathbb H}$

The horizontal planes in $\mathbb H$ is the set of all planes

$$\mathbb{H}_{p} = Span\{X_{1}(p), X_{2}(p)\} = \{(x, y, z) : xy_{p} - yx_{p} + 2z - 2z_{p} = 0\},$$

and $\mathbb{H}_{p} = p \cdot \mathbb{H}_{0} = p \cdot \{(x, y, 0) : x, y \in \mathbb{R}\}.$

A piecewise smooth curve $s \to \gamma(s) \in \mathbb{H}$ is called horizontal if its tangent vector $\gamma'(s) \in \mathbb{H}_p$ for every *s* where $\gamma'(s)$ exists. The Carnot-Caratheodory distance $d_{CC}(p, q)$ is given by:

$$d_{CC}(p,q) = \inf_{\gamma \in \Gamma(p,q)} \int_0^1 \|\gamma'(s)\| ds.$$

The Korányi gauge on \mathbb{H} is defined as $\|p\|_G = ((x^2 + y^2)^2 + 16z^2)^{\frac{1}{4}}$ and the gauge metric is given by

$$d_G(p,q) = \|p^{-1} \cdot q\|_G$$

and is left-translation invariant.

Notions of convexity in the Heisenberg group

Definition (Lu-Manfredi-Stroffolini, '04) A function $u : \mathbb{H} \to \mathbb{R}$ is said to be horizontally convex (h-convex), if for every $p \in \mathbb{H}$ and $h \in \mathbb{H}_0 = \{(x, y, 0) : x, y \in \mathbb{R}\}$

$$u(p \cdot h^{-1}) + u(p \cdot h) \geq 2u(p).$$

An equivalent notion of horizontally convexity (called weakly *H*-convex) on Carnot group is given by [Danielli, Garofalo, and Nhieu, '03] and they also studied various notions of convexity in this work.

Notions of convexity in the Heisenberg group

Definition (Lu-Manfredi-Stroffolini, '04) A function $u : \mathbb{H} \to \mathbb{R}$ is said to be horizontally convex (h-convex), if for every $p \in \mathbb{H}$ and $h \in \mathbb{H}_0 = \{(x, y, 0) : x, y \in \mathbb{R}\}$

 $u(p \cdot h^{-1}) + u(p \cdot h) \geq 2u(p).$

An equivalent notion of horizontally convexity (called weakly *H*-convex) on Carnot group is given by [Danielli, Garofalo, and Nhieu, '03] and they also studied various notions of convexity in this work.

Definition (Danielli-Garofalo-Nhieu, '03) We say, that a set $E \subset \mathbb{H}$ is h-convex if and only if for every $p \in E$ and $q \in \mathbb{H}_p \cap E$ the horizontal line segment [p, q] joining p and q stays inside E.

h-convex sets are very different from Euclidean convex sets. Construction of *h*-convex hull of a given set is not obvious.

Geodetically convexity of sets in \mathbb{H} is studied in [Monti-Rickly, '05]. Horizontally convex envelope of a given function is considered in [Liu-Z, 20].

Definition (Sun-Yang, 05 and Calogero-Carcano-Pini, 08) Suppose that $\Omega \subset \mathbb{H}$ is h-convex. We say, that a function $u : \Omega \to \mathbb{R}$ is h-quasiconvex if for every $\lambda \in \mathbb{R}$ the sublevel set $\{w \in \Omega : u(w) \le \lambda\}$ is h-convex. Equivalently, u is quasiconvex if and only if

 $u(w) \leq \max(u(p), u(q))$

for every $p \in \Omega$, $q \in \mathbb{H}_{p} \cap \Omega$ and $w \in [p, q]$.

Definition (h-quasiconvex envelope) Let Ω be an h-convex domain in \mathbb{H} and $f: \Omega \to \mathbb{R}$ be a given function. We say, that Q(f) is the h-quasiconvex envelope of f if it is the greatest h-quasiconvex function majorized by f, that is

 $Q(f)(p) := \sup\{g(p) : g \le f \text{ and } g \text{ is h-quasiconvex}\}.$

h-quasiconvex envelope

For an h-convex domain $\Omega \subset \mathbb{H}$ and $f : \Omega \to \mathbb{R}$ let us define

 $S[f](w) = \inf \left\{ \max\{f(p), f(q)\} : w \in [p, q], \ p \in \Omega, \ q \in \Omega \cap \mathbb{H}_p \right\}.$

- $\inf_{\Omega} f \leq S[f] \leq f \text{ in } \Omega;$
- S[f] = f in Ω provided f is already h-quasiconvex;
- Unlike in the Euclidean case that Q_E(f) = S_E(f), we do not necessarily have S_E(f) is a h-quasiconvex function in ℍ.

Example Let $f : \mathbb{H} \to \mathbb{R}$ be defined as $f(p) = |1 - z^2|$ for $p = (x, y, z) \in \mathbb{H}$. Then we can easily verify that S(f) is not h-quasiconvex.

h-quasiconvex envelope

For an h-convex domain $\Omega \subset \mathbb{H}$ and $f : \Omega \to \mathbb{R}$ let us define

 $S[f](w) = \inf \left\{ \max\{f(p), f(q)\} : w \in [p, q], \ p \in \Omega, \ q \in \Omega \cap \mathbb{H}_p \right\}.$

- $\inf_{\Omega} f \leq S[f] \leq f \text{ in } \Omega;$
- S[f] = f in Ω provided f is already h-quasiconvex;
- Unlike in the Euclidean case that Q_E(f) = S_E(f), we do not necessarily have S_E(f) is a h-quasiconvex function in ℍ.

Example Let $f : \mathbb{H} \to \mathbb{R}$ be defined as $f(p) = |1 - z^2|$ for $p = (x, y, z) \in \mathbb{H}$. Then we can easily verify that S(f) is not h-quasiconvex.

h-quasiconvex envelope

For an h-convex domain $\Omega \subset \mathbb{H}$ and $f : \Omega \to \mathbb{R}$ let us define

 $S[f](w) = \inf \left\{ \max\{f(p), f(q)\} : w \in [p, q], \ p \in \Omega, \ q \in \Omega \cap \mathbb{H}_p \right\}.$

- $\inf_{\Omega} f \leq S[f] \leq f \text{ in } \Omega;$
- S[f] = f in Ω provided f is already h-quasiconvex;
- Unlike in the Euclidean case that Q_E(f) = S_E(f), we do not necessarily have S_E(f) is a h-quasiconvex function in ℍ.

Example Let $f : \mathbb{H} \to \mathbb{R}$ be defined as $f(p) = |1 - z^2|$ for $p = (x, y, z) \in \mathbb{H}$. Then we can easily verify that S(f) is not h-quasiconvex.

Proposition Let Ω be an h-convex domain in \mathbb{H} . Suppose that f is bounded from below. Let $S^{n+1}[f](p) := S[S^n[f]](p)$ for n = 1, 2, ... Then $S^n[f] \to Q(f)$ pointwise in Ω as $n \to \infty$.

First-order characterization of h-quasiconvexity in $\mathbb H$

Barron, Goebel and Jensen (Barron-Goebel-Jensen, 12) introduce a first-order characterization of quasiconvexity in \mathbb{R}^n and use it to construct the quasiconvex envelope. Our work extend their results to the Heisenberg group.

Theorem Let $\Omega \subset \mathbb{H}$ be open and h-convex and $u : \Omega \to \mathbb{R}$ be upper semicontinuous. Then, u is h-quasiconvex if and only if whenever there exist $p \in \Omega$ and $\varphi \in C^1(\Omega)$ such that $u - \varphi$ attains a maximum at p, there holds

$$u(\xi) < u(p) \Rightarrow \langle \nabla_H \varphi(p), (p^{-1} \cdot \xi)_h \rangle \leq 0$$

for any $\xi \in \mathbb{H}_{\rho} \cap \Omega$.

The above theorem amounts to saying that $u \in USC(\Omega)$ is h-quasiconvex if

$$\sup \{ \langle
abla_{\mathcal{H}} u(oldsymbol{p}), (oldsymbol{p}^{-1} \cdot \xi)_h
angle : \xi \in \mathbb{H}_{oldsymbol{p}} \cap \Omega, \; u(\xi) < u(oldsymbol{p}) \} \leq 0$$

holds in the viscosity sense. Hence, we define

$$H(p, u(p), \nabla_H u(p)) = \sup \left\{ \langle \nabla_H u(p), (p^{-1} \cdot \xi)_h \rangle : \xi \in S_{\rho}(u) \right\},\$$

where $S_{\rho}(u) = \{ \xi \in \mathbb{H}_{\rho} \cap \Omega : u(\xi) < u(\rho) \}.$

Nonlocal Hamilton-Jacobi equation

Let *f* be a given function in a domain $\Omega \subset \mathbb{H}$. We focus on the study of the following nonlocal Hamilton-Jacobi equation:

 $u(p) + H(p, u(p), \nabla_H u(p)) = f(p)$ in Ω .

Definition (subsolution) Let $f \in USC(\Omega)$ be locally bounded in Ω . A locally bounded upper semicontinuous function $u : \Omega \to \mathbb{R}$ is called a subsolution of (1) if whenever there exist $p \in \Omega$ and $\varphi \in C^1(\Omega)$ such that $u - \varphi$ attains a maximum at p,

$$u(p) + H(p, u(p), \nabla_H \varphi(p)) \le f(p), \tag{1}$$

where $H(p, u(p), \nabla_H \varphi(p)) = \sup \{ \langle \nabla_H \varphi(p), (p^{-1} \cdot \xi)_h \rangle : \xi \in S_p(u) \}.$

Definition (supersolution) Let $f \in LSC(\Omega)$ be locally bounded in Ω . A locally bounded lower semicontinuous function $u : \Omega \to \mathbb{R}$ is called a weak supersolution of (1) if whenever there exist $p \in \Omega$ and $\varphi \in C^1(\Omega)$ such that $u - \varphi$ attains a minimum at p,

$$u(p) + \sup \left\{ \langle
abla_H arphi(p), (p^{-1} \cdot \xi)_h
angle : \ \xi \in ilde{S}_p(u)
ight\} \geq f(p),$$

where $\tilde{S}_{\rho}(u) := \{\xi \in \mathbb{H}_{\rho} \cap \Omega : u(\xi) \le u(\rho)\}.$

Properties of subsolutions

Let *f* be a given function in a domain $\Omega \subset \mathbb{H}$. A subsolution *u* satisfies in the viscosity sense that

$$u({\pmb{\rho}})+\sup\left\{\langle
abla_{H}u({\pmb{\rho}}),({\pmb{\rho}}^{-1}\cdot\xi)_{h}
angle:\xi\in \mathcal{S}_{\!\!\!
ho}(u)
ight\}\leq f({\pmb{\rho}})\quad ext{in }\Omega.$$

Remark If *f* is h-quasiconvex, then *f* is a subsolution to (1).

Any h-quasiconvex function majoried by f is a subsolution to (1).

Lemma Let $f \in USC(\Omega)$ be locally bounded in Ω . If $u \in USC(\Omega)$ is a subsolution of (1). Then $u \leq f$ in Ω .

Proposition (Maximum subsolution) Suppose that Ω is a domain in \mathbb{H} and $f \in USC(\Omega)$. Let \mathcal{A} be a family of subsolutions of (1). Let v be given by

$$v(p) = \sup\{u(p) : u \in A\}, p \in \Omega.$$

Then v^* is a subsolution of (1).

Quasiconvex envelope construction

Let Ω be a h-convex set. Let $f \in USC(\Omega)$. Assume there exists $\underline{f} \in USC(\Omega)$ h-quasiconvex such that

$$\underline{f} \leq f$$
 in Ω

Let $u_0 = f$. For n = 1, 2, ..., define u_n be the maximal subsolution of

$$u_n + H(p, u_n, \nabla_H u_n) = u_{n-1} \quad \text{in } \Omega \tag{2}$$

that is, $u_n = v_n^*$ in Ω , where

 $v_n = \sup\{u(p) : u \in USC(\Omega) \text{ is a subsolution of } (2)\}.$

By the property of subsolution, one can also see that

 $\underline{f} \leq \ldots \leq u_n \leq u_{n-1} \leq \ldots \leq u_0 = f$ in Ω for $n = 1, 2, \ldots$

We can show that $u_n \to Q(f)$ in $\overline{\Omega}$ as $n \to \infty$.

Quasiconvex envelope construction via sequence of subsolutions

Proposition Suppose that Ω is a *h*-convex domain in \mathbb{H} . Let $u_0 = f \in USC(\Omega)$ and $u_n \in USC(\Omega)$ be a subsolution of (2). Then

$$u(p) = \limsup_{n \to \infty} {}^*u_n(p) = \lim_{k \to \infty} \sup \left\{ u_n(q) : q \in B_{\frac{1}{k}}(p), \ n \ge k \right\}, \quad p \in \Omega$$

is h-quasiconvex in Ω .

OIST

Recall $u_0 = f$ and u_n is a decreasing sequence satisfying

$$u_n + H(p, u_n, \nabla_H u_n) \leq u_{n-1}$$
 in Ω

• Note
$$\underline{f} \leq \ldots \leq u_n \leq u_{n-1} \leq \ldots \leq u_0 = f$$
 in Ω for $n = 1, 2, \ldots$

- Since $\lim_{n\to\infty} u_n = \limsup_{n\to\infty}^* u_n$ when u_n is decreasing, it follows that $\lim_{n\to\infty} u_n \leq Q(f)$.
- On the other hand, *Q*(*f*) is a subsolution to the equation and the maximality of *u_n* implies that *Q*(*f*) ≤ *u_n* for each *n*.

Remark We can also construct the h-quasiconvex envelope by taking u_n to be the solution of the above equation starting from $u_0 = f$ with boundary data f. It follows from the following results.

Uniqueness and Existence

Theorem (Comparison principle) Let Ω be a bounded domain in \mathbb{H} and $f \in C(\Omega)$. Let $u \in USC(\overline{\Omega})$ be a subsolution, that is,

$$u(p) + \sup\left\{\langle
abla_H u(p), (p^{-1} \cdot \xi)_h
angle : \xi \in S_p(u)
ight\} \leq f(p)$$

and $v \in LSC(\overline{\Omega})$ be a supersolution

$$v(q) + \sup\left\{ \langle
abla_H v(q), (q^{-1} \cdot \xi)_h
angle : \xi \in ilde{S}_q(v)
ight\} \geq f(q)$$

If $u \leq v \equiv c$ on $\partial \Omega$ and $u \leq c$ in Ω , then $u \leq v$ in $\overline{\Omega}$.

Uniqueness and Existence

Theorem (Comparison principle) Let Ω be a bounded domain in \mathbb{H} and $f \in C(\Omega)$. Let $u \in USC(\overline{\Omega})$ be a subsolution, that is,

$$u(p) + \sup\left\{\langle
abla_H u(p), (p^{-1} \cdot \xi)_h
angle : \xi \in S_p(u)
ight\} \leq f(p)$$

and $v \in LSC(\overline{\Omega})$ be a supersolution

$$\mathcal{V}(q) + \sup\left\{ \langle
abla_{H} \mathcal{V}(q), (q^{-1} \cdot \xi)_{h}
angle : \xi \in ilde{\mathcal{S}}_{q}(\mathcal{V})
ight\} \geq f(q).$$

If $u \leq v \equiv c$ on $\partial \Omega$ and $u \leq c$ in Ω , then $u \leq v$ in $\overline{\Omega}$.

The main challenge compared to the Euclidean space lies in the requirement that points are in the intersection of the sublevel sets with the horizontal plane at p_{ε} and q_{ε} .

Theorem (Existence by Perron's method) Let $\Omega \subset \mathbb{H}$ be a bounded domain. Let $f \in C(\overline{\Omega})$ and satisfy f = c on $\partial\Omega$ and $f \leq c$ in $\overline{\Omega}$ for some $c \in \mathbb{R}$. Assume that there exist a subsolution $\underline{u} \in C(\overline{\Omega})$ of (1) satisfying $\underline{u} \leq f$ in Ω and $\underline{u} = f$ on $\partial\Omega$. For any $p \in \overline{\Omega}$, let

 $U(p) = \sup\{u(p) : u \in USC(\Omega) \text{ is a subsolution of } (1)\}.$

Then <u> U^* </u> is continuous in $\overline{\Omega}$ and is a solution of (1) satisfying $U^* = f$ on $\partial \Omega$.

Quasiconvex envelope construction via sequence of solutions

Let Ω be a bounded h-convex set. Let $f \in C(\overline{\Omega})$ and satisfy f = c on $\partial\Omega$ and $f \leq c$ in $\overline{\Omega}$ for some $c \in \mathbb{R}$. Assume there exists $\underline{f} \in C(\overline{\Omega})$ h-quasiconvex such that

$$\underline{f} \leq f$$
 in $\overline{\Omega}$ and $\underline{f} = f$ on $\partial \Omega$.

Let $u_0 = f$. By Existence and Uniqueness Theorem, for n = 1, 2, ... we can find a unique solution u_n of

$$u_n + H(p, u_n, \nabla_H u_n) = u_{n-1} \quad \text{in } \Omega \tag{3}$$

satisfying

$$u_n = f \quad \text{on } \partial \Omega.$$
 (4)

By the property of subsolution, one can also see that

$$\underline{f} \leq \ldots \leq u_n \leq u_{n-1} \leq \ldots \leq u_0 = f$$
 in Ω for $n = 1, 2, \ldots$

We can show that $u_n \to Q(f)$ in $\overline{\Omega}$ as $n \to \infty$.

h-convex hull through quasiconvex envelope

Definition (H-convex hull) For any set $E \subset \mathbb{H}$, the h-convex hull of E, denoted by co(E), is defined to be the smallest h-convex set in \mathbb{H} containing E, i.e.,

 $co(E) = \bigcap \{ D \subset \mathbb{H} : D \text{ is h-convex and satisfies } E \subset D \}.$

h-convex hull through quasiconvex envelope

Definition (H-convex hull) For any set $E \subset \mathbb{H}$, the h-convex hull of E, denoted by co(E), is defined to be the smallest h-convex set in \mathbb{H} containing E, i.e.,

 $co(E) = \bigcap \{ D \subset \mathbb{H} : D \text{ is h-convex and satisfies } E \subset D \}.$

1. For a given open set $E \subset \mathbb{H}$, we take a function $f \in C(\mathbb{H})$ such that

 $E = \{p \in \mathbb{H} : f(p) < 0\}.$

- 2. We construct the h-quasiconvex envelope Q(f).
- 3. The h-convex hull turns out to be the 0-sublevel set of Q(f), that is,

$$\operatorname{co}(E) = \{ p \in \mathbb{H} : Q(f)(p) < 0 \}.$$

Theorem (Construct *h*-convex hull through quasiconvex envelope) Let $E \subset \mathbb{H}$ be an open set. Assume $f \in C(\mathbb{H})$ satisfies $E = \{p \in \mathbb{H} : f(p) < 0\}$. Let Q(f) be the *h*-quasiconvex envelope of *f*. Then $Q(f) \in USC(\mathbb{H})$ and

$$\operatorname{co}(E) = \{ p \in \mathbb{H} : Q(f) < 0 \}.$$

Summary

- We studied the h-quasiconvex functions in the Heisenberg group 𝔄 and gives two ways of constructing a quasiconvex envelope of a given function.
- One way is taking the limit of a sequence of functions achieved by applying the convexification operator.
- The other appraoch is based on one 1st-order characterization of quasiconvex functions. We can construct the quasiconvex envelope as the pointwise limit of the sequence of maximal subsolution.
- We also obtain the uniqueness and existence of the above non-local Hamilton-Jacobi equation. The quasiconvex envelope can be constructed as the pointwise limit of the sequence of solutions as well.
- Finally, we study the relation between *h*-convex hull and quasiconvex functions and apply this relation to find the *h*-convex hull of a given set.

Summary

- We studied the h-quasiconvex functions in the Heisenberg group 𝔄 and gives two ways of constructing a quasiconvex envelope of a given function.
- One way is taking the limit of a sequence of functions achieved by applying the convexification operator.
- The other appraoch is based on one 1st-order characterization of quasiconvex functions. We can construct the quasiconvex envelope as the pointwise limit of the sequence of maximal subsolution.
- We also obtain the uniqueness and existence of the above non-local Hamilton-Jacobi equation. The quasiconvex envelope can be constructed as the pointwise limit of the sequence of solutions as well.
- Finally, we study the relation between *h*-convex hull and quasiconvex functions and apply this relation to find the *h*-convex hull of a given set.

Thank you!

