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Outline

• Notions of convexity in the Heisenberg group H;

• Quasiconvex envelope contruction through 1st-order non-local
Hamilton-Jacobi equation;

• Obtaining horizontal convex hull of a given set via constructing the
quasiconvex envelope of a function.
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The Heisenberg group H

The Heisenberg group H is R3 endowed with non-commutative group
multiplication for all p = (xp, yp, zp) and q = (xq , yq , zq)

(xp, yp, zp) · (xq , yq , zq) =

(
xp + xq , yp + yq , zp + zq +

1
2
(xpyq − xqyp)

)
.

The Lie Algebra of H is generated by the left-invariant vector fields

X1(p) =
∂

∂x
−y

2
∂

∂z

X2(p) =
∂

∂y
+

x
2

∂

∂z

Note X1X2 ̸= X2X1. The horizontal gradient of u : H → R are given by
∇Hu = (X1u,X2u).
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Horizontal planes and various metrics in H

The horizontal planes in H is the set of all planes

Hp = Span{X1(p),X2(p)} = {(x , y , z) : xyp − yxp + 2z − 2zp = 0},

and Hp = p ·H0 = p · {(x , y , 0) : x , y ∈ R}.

A piecewise smooth curve s → γ(s) ∈ H is called horizontal if its tangent
vector γ′(s) ∈ Hp for every s where γ′(s) exists. The Carnot-Caratheodory
distance dCC(p, q) is given by:

dCC(p, q) = inf
γ∈Γ(p,q)

ˆ 1

0
∥γ′(s)∥ ds.

The Korányi gauge on H is defined as ∥p∥G =
(
(x2 + y2)2 + 16z2) 1

4 and the
gauge metric is given by

dG(p, q) = ∥p−1 · q∥G

and is left-translation invariant.
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Notions of convexity in the Heisenberg group

Definition (Lu-Manfredi-Stroffolini, ’04) A function u : H → R is said to be
horizontally convex (h-convex), if for every p ∈ H and
h ∈ H0 = {(x , y , 0) : x , y ∈ R}

u(p · h−1) + u(p · h) ≥ 2u(p).

An equivalent notion of horizontally convexity (called weakly H-convex) on
Carnot group is given by [Danielli, Garofalo, and Nhieu, ’03] and they also
studied various notions of convexity in this work.

Definition (Danielli-Garofalo-Nhieu, ’03) We say, that a set E ⊂ H is
h-convex if and only if for every p ∈ E and q ∈ Hp ∩ E the horizontal line
segment [p, q] joining p and q stays inside E .

h-convex sets are very different from Euclidean convex sets. Construction of
h-convex hull of a given set is not obvious.

Geodetically convexity of sets in H is studied in [Monti-Rickly, ’05].
Horizontally convex envelope of a given function is considered in [Liu-Z, 20].
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Quasiconvex functions in H

Definition (Sun-Yang, 05 and Calogero-Carcano-Pini, 08) Suppose that
Ω ⊂ H is h-convex. We say, that a function u : Ω → R is h-quasiconvex if for
every λ ∈ R the sublevel set {w ∈ Ω : u(w) ≤ λ} is h-convex. Equivalently, u
is quasiconvex if and only if

u(w) ≤ max(u(p), u(q))

for every p ∈ Ω, q ∈ Hp ∩ Ω and w ∈ [p, q].

Defintion (h-quasiconvex envelope) Let Ω be an h-convex domain in H and
f : Ω → R be a given function. We say, that Q(f ) is the h-quasiconvex
envelope of f if it is the greatest h-quasiconvex function majorized by f , that is

Q(f )(p) := sup{g(p) : g ≤ f and g is h-quasiconvex}.
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h-quasiconvex envelope

For an h-convex domain Ω ⊂ H and f : Ω → R let us define

S[f ](w) = inf {max{f (p), f (q)} : w ∈ [p, q], p ∈ Ω, q ∈ Ω ∩Hp} .

• infΩ f ≤ S[f ] ≤ f in Ω;

• S[f ] = f in Ω provided f is already h-quasiconvex;

• Unlike in the Euclidean case that QE(f ) = SE(f ), we do not necessarily
have SE(f ) is a h-quasiconvex function in H.

Example Let f : H → R be defined as f (p) = |1 − z2| for p = (x , y , z) ∈ H.
Then we can easily verify that S(f ) is not h-quasiconvex.

Proposition Let Ω be an h-convex domain in H. Suppose that f is bounded
from below. Let Sn+1[f ](p) := S[Sn[f ]](p) for n = 1, 2, . . .. Then Sn[f ] → Q(f )
pointwise in Ω as n → ∞.
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First-order characterization of h-quasiconvexity in H

Barron, Goebel and Jensen (Barron-Goebel-Jensen, 12) introduce a
first-order characterization of quasiconvexity in Rn and use it to construct the
quasiconvex envelope. Our work extend their results to the Heisenberg
group.

Theorem Let Ω ⊂ H be open and h-convex and u : Ω → R be upper
semicontinuous. Then, u is h-quasiconvex if and only if whenever there exist
p ∈ Ω and φ ∈ C1(Ω) such that u − φ attains a maximum at p, there holds

u(ξ) < u(p) ⇒ ⟨∇Hφ(p), (p−1 · ξ)h⟩ ≤ 0

for any ξ ∈ Hp ∩ Ω.

The above theorem amounts to saying that u ∈ USC(Ω) is h-quasiconvex if

sup{⟨∇Hu(p), (p−1 · ξ)h⟩ : ξ ∈ Hp ∩ Ω, u(ξ) < u(p)} ≤ 0

holds in the viscosity sense. Hence, we define

H(p, u(p),∇Hu(p)) = sup
{
⟨∇Hu(p), (p−1 · ξ)h⟩ : ξ ∈ Sp(u)

}
,

where Sp(u) = {ξ ∈ Hp ∩ Ω : u(ξ) < u(p)}.
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Nonlocal Hamilton-Jacobi equation

Let f be a given function in a domain Ω ⊂ H. We focus on the study of the
following nonlocal Hamilton-Jacobi equation:

u(p) + H(p, u(p),∇Hu(p)) = f (p) in Ω.

Definition (subsolution) Let f ∈ USC(Ω) be locally bounded in Ω. A locally
bounded upper semicontinuous function u : Ω → R is called a subsolution of
(1) if whenever there exist p ∈ Ω and φ ∈ C1(Ω) such that u − φ attains a
maximum at p,

u(p) + H(p, u(p),∇Hφ(p)) ≤ f (p), (1)

where H(p, u(p),∇Hφ(p)) = sup
{
⟨∇Hφ(p), (p−1 · ξ)h⟩ : ξ ∈ Sp(u)

}
.

Definition (supersolution) Let f ∈ LSC(Ω) be locally bounded in Ω. A
locally bounded lower semicontinuous function u : Ω → R is called a weak
supersolution of (1) if whenever there exist p ∈ Ω and φ ∈ C1(Ω) such that
u − φ attains a minimum at p,

u(p) + sup
{
⟨∇Hφ(p), (p−1 · ξ)h⟩ : ξ ∈ S̃p(u)

}
≥ f (p),

where S̃p(u) := {ξ ∈ Hp ∩ Ω : u(ξ) ≤ u(p)}.
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Properties of subsolutions

Let f be a given function in a domain Ω ⊂ H. A subsolution u satisfies in the
viscosity sense that

u(p) + sup
{
⟨∇Hu(p), (p−1 · ξ)h⟩ : ξ ∈ Sp(u)

}
≤ f (p) in Ω.

Remark If f is h-quasiconvex, then f is a subsolution to (1).

Any h-quasiconvex function majoried by f is a subsolution to (1).

Lemma Let f ∈ USC(Ω) be locally bounded in Ω. If u ∈ USC(Ω) is a
subsolution of (1). Then u ≤ f in Ω.

Proposition (Maximum subsolution) Suppose that Ω is a domain in H and
f ∈ USC(Ω). Let A be a family of subsolutions of (1). Let v be given by

v(p) = sup{u(p) : u ∈ A}, p ∈ Ω.

Then v∗ is a subsolution of (1).
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Quasiconvex envelope construction

Let Ω be a h-convex set. Let f ∈ USC(Ω). Assume there exists f ∈ USC(Ω)
h-quasiconvex such that

f ≤ f in Ω

Let u0 = f . For n = 1, 2, . . ., define un be the maximal subsolution of

un + H(p, un,∇Hun) = un−1 in Ω (2)

that is, un = v∗
n in Ω, where

vn = sup{u(p) : u ∈ USC(Ω) is a subsolution of (2)}.

By the property of subsolution, one can also see that

f ≤ . . . ≤ un ≤ un−1 ≤ . . . ≤ u0 = f in Ω for n = 1, 2, . . ..

We can show that un → Q(f ) in Ω̄ as n → ∞.
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Quasiconvex envelope construction via sequence of subsolutions

Proposition Suppose that Ω is a h-convex domain in H. Let u0 = f ∈ USC(Ω)
and un ∈ USC(Ω) be a subsolution of (2). Then

u(p) = lim sup
n→∞

∗un(p) = lim
k→∞

sup
{

un(q) : q ∈ B 1
k
(p), n ≥ k

}
, p ∈ Ω

is h-quasiconvex in Ω.

Recall u0 = f and un is a decreasing sequence satisfying

un + H(p, un,∇Hun) ≤ un−1 in Ω

• Note f ≤ . . . ≤ un ≤ un−1 ≤ . . . ≤ u0 = f in Ω for n = 1, 2, . . ..

• Since lim
n→∞

un = lim sup
n→∞

∗un when un is decreasing, it follows that

lim
n→∞

un ≤ Q(f ).

• On the other hand, Q(f ) is a subsolution to the equation and the
maximality of un implies that Q(f ) ≤ un for each n.

Remark We can also construct the h-quasiconvex envelope by taking un to be
the solution of the above equation starting from u0 = f with boundary data f .
It follows from the following results.
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Uniqueness and Existence
Theorem (Comparison principle) Let Ω be a bounded domain in H and
f ∈ C(Ω). Let u ∈ USC(Ω̄) be a subsolution, that is,

u(p) + sup
{
⟨∇Hu(p), (p−1 · ξ)h⟩ : ξ ∈ Sp(u)

}
≤ f (p)

and v ∈ LSC(Ω̄) be a supersolution

v(q) + sup
{
⟨∇Hv(q), (q−1 · ξ)h⟩ : ξ ∈ S̃q(v)

}
≥ f (q).

If u ≤ v ≡ c on ∂Ω and u ≤ c in Ω, then u ≤ v in Ω̄.

The main challenge compared to the Euclidean space lies in the requirement
that points are in the intersection of the sublevel sets with the horizontal plane
at pε and qε.

Theorem (Existence by Perron’s method) Let Ω ⊂ H be a bounded domain.
Let f ∈ C(Ω̄) and satisfy f = c on ∂Ω and f ≤ c in Ω̄ for some c ∈ R. Assume
that there exist a subsolution u ∈ C(Ω̄) of (1) satisfying u ≤ f in Ω and u = f
on ∂Ω. For any p ∈ Ω̄, let

U(p) = sup{u(p) : u ∈ USC(Ω) is a subsolution of (1)}.

Then U∗ is continuous in Ω̄ and is a solution of (1) satisfying U∗ = f on ∂Ω.
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Quasiconvex envelope construction via sequence of solutions

Let Ω be a bounded h-convex set. Let f ∈ C(Ω̄) and satisfy f = c on ∂Ω and
f ≤ c in Ω̄ for some c ∈ R. Assume there exists f ∈ C(Ω̄) h-quasiconvex
such that

f ≤ f in Ω̄ and f = f on ∂Ω.

Let u0 = f . By Existence and Uniqueness Theorem, for n = 1, 2, . . . we can
find a unique solution un of

un + H(p, un,∇Hun) = un−1 in Ω (3)

satisfying
un = f on ∂Ω. (4)

By the property of subsolution, one can also see that

f ≤ . . . ≤ un ≤ un−1 ≤ . . . ≤ u0 = f in Ω for n = 1, 2, . . ..

We can show that un → Q(f ) in Ω̄ as n → ∞.
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h-convex hull through quasiconvex envelope

Definition (H-convex hull) For any set E ⊂ H, the h-convex hull of E ,
denoted by co(E), is defined to be the smallest h-convex set in H containing
E , i.e.,

co(E) =
⋂

{D ⊂ H : D is h-convex and satisfies E ⊂ D}.

1. For a given open set E ⊂ H, we take a function f ∈ C(H) such that

E = {p ∈ H : f (p) < 0}.

2. We construct the h-quasiconvex envelope Q(f ).

3. The h-convex hull turns out to be the 0-sublevel set of Q(f ), that is,

co(E) = {p ∈ H : Q(f )(p) < 0}.

Theorem (Construct h-convex hull through quasiconvex envelope) Let E ⊂ H
be an open set. Assume f ∈ C(H) satisfies E = {p ∈ H : f (p) < 0}. Let Q(f )
be the h-quasiconvex envelope of f . Then Q(f ) ∈ USC(H) and

co(E) = {p ∈ H : Q(f ) < 0}.
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Summary

• We studied the h-quasiconvex functions in the Heisenberg group H and
gives two ways of constructing a quasiconvex envelope of a given
function.

• One way is taking the limit of a sequence of functions achieved by
applying the convexification operator.

• The other appraoch is based on one 1st-order characterization of
quasiconvex functions. We can construct the quasiconvex envelope as
the pointwise limit of the sequence of maximal subsolution.

• We also obtain the uniqueness and existence of the above non-local
Hamilton-Jacobi equation. The quasiconvex envelope can be
constructed as the pointwise limit of the sequence of solutions as well.

• Finally, we study the relation between h-convex hull and quasiconvex
functions and apply this relation to find the h-convex hull of a given set.

Thank you!
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