Optimal Liouville-type theorems for system of parabolic inequalities

Anh Tuan DUONG

Hanoi University of Science and Technology
(This talk is based on a joint work with Quoc Hung Phan)
March 3, 2023

Content

(1) Introduction

Content

(1) Introduction

(2) Our results

Content

(1) Introduction

(2) Our results
(3) The approaches

Content

(1) Introduction
(2) Our results
(3) The approaches

4 System involving the fractional Laplacian

Content

（1）Introduction
（2）Our results
（3）The approaches

4 System involving the fractional Laplacian

Models and questions

In this talk, we are concerned with Liouville-type theorems for

$$
\begin{equation*}
w_{t}-\Delta w \geq w^{p} \text { in } \mathbb{R}^{N} \times l \tag{1}
\end{equation*}
$$

Models and questions

In this talk, we are concerned with Liouville-type theorems for

$$
\begin{equation*}
w_{t}-\Delta w \geq w^{p} \quad \text { in } \mathbb{R}^{N} \times I \tag{1}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
u_{t}-\Delta u \geq v^{p}, \tag{2}\\
v_{t}-\Delta v \geq u^{q}
\end{array} \quad \text { in } \mathbb{R}^{N} \times I,\right.
$$

Models and questions

In this talk, we are concerned with Liouville-type theorems for

$$
\begin{equation*}
w_{t}-\Delta w \geq w^{p} \quad \text { in } \mathbb{R}^{N} \times l \tag{1}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
u_{t}-\Delta u \geq v^{p}, \tag{2}\\
v_{t}-\Delta v \geq u^{q}
\end{array} \quad \text { in } \mathbb{R}^{N} \times I,\right.
$$

where the exponents p and q are real numbers, l is an interval of \mathbb{R}.

Models and questions

In this talk, we are concerned with Liouville-type theorems for

$$
\begin{equation*}
w_{t}-\Delta w \geq w^{p} \quad \text { in } \mathbb{R}^{N} \times I \tag{1}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
u_{t}-\Delta u \geq v^{p}, \tag{2}\\
v_{t}-\Delta v \geq u^{q}
\end{array} \quad \text { in } \mathbb{R}^{N} \times I\right.
$$

where the exponents p and q are real numbers, l is an interval of \mathbb{R}. We propose to study
(a) Liouville-type theorems for nonnegative solutions in whole space $\mathbb{R}^{N} \times \mathbb{R}$ and in $\mathbb{R}^{N} \times(0, \infty)$, provided that $p, q>0$.
(b) Liouville-type theorems for positive solutions in $\mathbb{R}^{N} \times \mathbb{R}$ and in $\mathbb{R}^{N} \times(0, \infty)$ with real exponents p, q.

Models and questions

In this talk, we are concerned with Liouville-type theorems for

$$
\begin{equation*}
w_{t}-\Delta w \geq w^{p} \quad \text { in } \mathbb{R}^{N} \times I \tag{1}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
u_{t}-\Delta u \geq v^{p}, \tag{2}\\
v_{t}-\Delta v \geq u^{q}
\end{array} \quad \text { in } \mathbb{R}^{N} \times I\right.
$$

where the exponents p and q are real numbers, l is an interval of \mathbb{R}. We propose to study
(a) Liouville-type theorems for nonnegative solutions in whole space $\mathbb{R}^{N} \times \mathbb{R}$ and in $\mathbb{R}^{N} \times(0, \infty)$, provided that $p, q>0$.
(b) Liouville-type theorems for positive solutions in $\mathbb{R}^{N} \times \mathbb{R}$ and in $\mathbb{R}^{N} \times(0, \infty)$ with real exponents p, q.

Nonnegative solutions of (1)

The well-known Fujita result ensures the nonexistence of nontrivial nonnegative solution of problem (1) in $\mathbb{R}^{N} \times(0, \infty)$ under the condition $1<p \leq \frac{N+2}{N}$, see $\left[\right.$ Fuj66] ${ }^{1}[\text { MP01 }]^{2}$.

[^0]
Nonnegative solutions of (1)

The well-known Fujita result ensures the nonexistence of nontrivial nonnegative solution of problem (1) in $\mathbb{R}^{N} \times(0, \infty)$ under the condition $1<p \leq \frac{N+2}{N}$, see [Fuj66] ${ }^{1}\left[\right.$ MP01] ${ }^{2}$.
When $p>\frac{N+2}{N}$, a nonnegative solution is, see $\left[\right.$ Kur15] ${ }^{3}$
$w(x, t)=\left\{\begin{array}{ll}k t^{-\frac{1}{p-1}} e^{-\gamma \frac{1+|x|^{2}}{t}} & \text { if } t>0, x \in \mathbb{R}^{N} \\ 0 & \text { if } t \leq 0, x \in \mathbb{R}^{N}\end{array}\right.$.

[^1]
Nonnegative solutions of (1)

The well-known Fujita result ensures the nonexistence of nontrivial nonnegative solution of problem (1) in $\mathbb{R}^{N} \times(0, \infty)$ under the condition $1<p \leq \frac{N+2}{N}$, see [Fuj66] ${ }^{1}\left[\right.$ MP01] ${ }^{2}$.
When $p>\frac{N+2}{N}$, a nonnegative solution is, see $\left[\right.$ Kur15] ${ }^{3}$
$w(x, t)=\left\{\begin{array}{ll}k t^{-\frac{1}{p-1}} e^{-\gamma \frac{1+|x|^{2}}{t}} & \text { if } t>0, x \in \mathbb{R}^{N} \\ 0 & \text { if } t \leq 0, x \in \mathbb{R}^{N}\end{array}\right.$.
When $0<p<1, w(x, t)=\left\{\begin{array}{ll}t^{\frac{1}{1-p}} & \text { if } t>0, \\ 0 & \text { if } t \leq 0\end{array}\right.$ is a nonnegative solution.

[^2]
Nonnegative solutions of (1)

The well-known Fujita result ensures the nonexistence of nontrivial nonnegative solution of problem (1) in $\mathbb{R}^{N} \times(0, \infty)$ under the condition $1<p \leq \frac{N+2}{N}$, see [Fuj66] ${ }^{1}\left[\right.$ MP01] ${ }^{2}$.
When $p>\frac{N+2}{N}$, a nonnegative solution is, see $\left[\right.$ Kur15] ${ }^{3}$
$w(x, t)=\left\{\begin{array}{ll}k t^{-\frac{1}{p-1}} e^{-\gamma \frac{1+|x|^{2}}{t}} & \text { if } t>0, x \in \mathbb{R}^{N} \\ 0 & \text { if } t \leq 0, x \in \mathbb{R}^{N}\end{array}\right.$.
When $0<p<1, w(x, t)=\left\{\begin{array}{ll}t^{\frac{1}{1-p}} & \text { if } t>0, \\ 0 & \text { if } t \leq 0\end{array}\right.$ is a nonnegative solution.

[^3]
Positive solutions of problem (1)

Concerning the positive solutions of (1):
${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Positive solutions of problem (1)

Concerning the positive solutions of (1): When $1<p \leq \frac{N+2}{N}$: nonexistence of positive solutions (Fujita result).
${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Positive solutions of problem (1)

Concerning the positive solutions of (1): When $1<p \leq \frac{N+2}{N}$: nonexistence of positive solutions (Fujita result). When $p>\frac{N+2}{N}$: existence of positive solutions [Tal09] ${ }^{1}$.
${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Positive solutions of problem (1)

Concerning the positive solutions of (1): When $1<p \leq \frac{N+2}{N}$: nonexistence of positive solutions (Fujita result). When $p>\frac{N+2}{N}$: existence of positive solutions [Tal09] ${ }^{1}$.
When $p=1$, a positive solution is $w(x, t)=e^{t}$.
${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Positive solutions of problem (1)

Concerning the positive solutions of (1): When $1<p \leq \frac{N+2}{N}$: nonexistence of positive solutions (Fujita result). When $p>\frac{N+2}{N}$: existence of positive solutions [Tal09] ${ }^{1}$.
When $p=1$, a positive solution is $w(x, t)=e^{t}$.
The range $-\infty<p<1$ has not been treated in the literature.
${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Positive solutions of problem (1)

Concerning the positive solutions of (1): When $1<p \leq \frac{N+2}{N}$: nonexistence of positive solutions (Fujita result). When $p>\frac{N+2}{N}$: existence of positive solutions [Tal09] ${ }^{1}$.
When $p=1$, a positive solution is $w(x, t)=e^{t}$.
The range $-\infty<p<1$ has not been treated in the literature.
${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Nonnegative solutions of system (2)

By using the rescaled test-function method, one can deduce the nonexistence of nontrivial nonnegative solutions of (2) in $\mathbb{R}^{N} \times \mathbb{R}$ in the range

$$
p, q>1 \quad \text { and } \max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\} \geq N .^{12}
$$

[^4]
Nonnegative solutions of system (2)

By using the rescaled test-function method, one can deduce the nonexistence of nontrivial nonnegative solutions of (2) in $\mathbb{R}^{N} \times \mathbb{R}$ in the range

$$
p, q>1 \quad \text { and } \max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\} \geq N .{ }^{12}
$$

However, the Liouville-type theorem for the case $p \leq 1$ and/or $q \leq 1$ is still unknown.

[^5]
Nonnegative solutions of system (2)

By using the rescaled test-function method, one can deduce the nonexistence of nontrivial nonnegative solutions of (2) in $\mathbb{R}^{N} \times \mathbb{R}$ in the range

$$
p, q>1 \quad \text { and } \max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\} \geq N .{ }^{12}
$$

However, the Liouville-type theorem for the case $p \leq 1$ and/or $q \leq 1$ is still unknown.

[^6]
Nonnegative solutions of system (2)

Under an additional assumption that solutions are spatially bounded, Escobedo and Herrero ${ }^{3}$ proved a Liouville-type theorem for nonnegative solutions of parabolic system

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=v^{p} \tag{3}\\
v_{t}-\Delta v=u^{q}
\end{array}\right.
$$

in $\mathbb{R}^{N} \times(0, \infty)$,

[^7]
Nonnegative solutions of system (2)

Under an additional assumption that solutions are spatially bounded, Escobedo and Herrero ${ }^{3}$ proved a Liouville-type theorem for nonnegative solutions of parabolic system

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=v^{p} \tag{3}\\
v_{t}-\Delta v=u^{q}
\end{array}\right.
$$

in $\mathbb{R}^{N} \times(0, \infty)$, where the range of nonexistence of nontrivial nonnegative solution is

$$
\begin{equation*}
p, q>0, p q>1 \text { and } \max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\} \geq N \tag{4}
\end{equation*}
$$

[^8]
Nonnegative solutions of system (2)

Under an additional assumption that solutions are spatially bounded, Escobedo and Herrero ${ }^{3}$ proved a Liouville-type theorem for nonnegative solutions of parabolic system

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=v^{p} \tag{3}\\
v_{t}-\Delta v=u^{q}
\end{array}\right.
$$

in $\mathbb{R}^{N} \times(0, \infty)$, where the range of nonexistence of nontrivial nonnegative solution is

$$
\begin{equation*}
p, q>0, p q>1 \text { and } \max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\} \geq N \tag{4}
\end{equation*}
$$

[^9]
Positive solutions of system (2)

If we look for stationary positive solutions, then by the result of Armstrong and Sirakov ${ }^{1}$, the optimal range of the existence is

$$
\begin{equation*}
p, q>0, \quad p q>1 \text { and } \max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\}<N-2 . \tag{5}
\end{equation*}
$$

${ }^{1}$ Armstrong, S. N., and Sirakov, B. Nonexistence of positive supersolutions of elliptic equations via the maximum principle. Comm. Partial Differential Equations 36, 11 (2011), 2011-2047.

Positive solutions of system (2)

If we look for stationary positive solutions, then by the result of Armstrong and Sirakov ${ }^{1}$, the optimal range of the existence is

$$
\begin{equation*}
p, q>0, \quad p q>1 \text { and } \max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\}<N-2 . \tag{5}
\end{equation*}
$$

In general case where solutions can be non-stationary, the range (5) is actually not optimal for the existence of positive solutions of (2).

[^10]
Positive solutions of system (2)

If we look for stationary positive solutions, then by the result of Armstrong and Sirakov ${ }^{1}$, the optimal range of the existence is

$$
\begin{equation*}
p, q>0, \quad p q>1 \text { and } \max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\}<N-2 . \tag{5}
\end{equation*}
$$

In general case where solutions can be non-stationary, the range (5) is actually not optimal for the existence of positive solutions of (2).

[^11]
Content

(1) Introduction

(2) Our results
(3) The approaches
(4) System involving the fractional Laplacian

Liouville-type theorems for (1)

The following results are obtained in the joint-work with Quoc Hung Phan [DP21]. ${ }^{1}$
${ }^{1}$ Duong, Anh Tuan; Phan, Quoc Hung Optimal Liouville-type theorems for a system of parabolic inequalities. Commun. Contemp. Math. 22 (2020), no. 6, $=1950043,22 \mathrm{pp}$.

Liouville-type theorems for (1)

The following results are obtained in the joint-work with Quoc Hung Phan [DP21]. ${ }^{1}$
The case of positive solutions:

[^12]
Liouville-type theorems for (1)

The following results are obtained in the joint-work with Quoc Hung Phan [DP21]. ${ }^{1}$
The case of positive solutions:

Theorem 1

The problem

$$
w_{t}-\Delta w \geq w^{p}
$$

has no positive classical solution in $\mathbb{R}^{N} \times \mathbb{R}$ if and only if

$$
p \in(-\infty, 1) \cup(1,(N+2) / N] .
$$

[^13]
Liouville-type theorems for (1)

The following results are obtained in the joint-work with Quoc Hung Phan [DP21]. ${ }^{1}$
The case of positive solutions:

Theorem 1

The problem

$$
w_{t}-\Delta w \geq w^{p}
$$

has no positive classical solution in $\mathbb{R}^{N} \times \mathbb{R}$ if and only if

$$
p \in(-\infty, 1) \cup(1,(N+2) / N] .
$$

[^14]
Liouville-type theorems for system (2)

Recall the system (2)

$$
\left\{\begin{array}{l}
u_{t}-\Delta u \geq v^{p} \\
v_{t}-\Delta v \geq u^{q}
\end{array}\right.
$$

Liouville-type theorems for system (2)

Recall the system (2)

$$
\left\{\begin{array}{l}
u_{t}-\Delta u \geq v^{p} \\
v_{t}-\Delta v \geq u^{q}
\end{array}\right.
$$

and the condition (4)

$$
p, q>0, p q>1 \text { and } \max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\} \geq N
$$

Liouville-type theorems for system (2)

Recall the system (2)

$$
\left\{\begin{array}{l}
u_{t}-\Delta u \geq v^{p} \\
v_{t}-\Delta v \geq u^{q}
\end{array}\right.
$$

and the condition (4)

$$
p, q>0, p q>1 \text { and } \max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\} \geq N
$$

The case of nonnegative solutions:

Liouville-type theorems for system (2)

Recall the system (2)

$$
\left\{\begin{array}{l}
u_{t}-\Delta u \geq v^{p} \\
v_{t}-\Delta v \geq u^{q}
\end{array}\right.
$$

and the condition (4)

$$
p, q>0, p q>1 \text { and } \max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\} \geq N .
$$

The case of nonnegative solutions:

Theorem 2

Let $p, q>0$, then the system (2) has no nontrivial, nonnegative, classical solution in $\mathbb{R}^{N} \times \mathbb{R}$ if and only if (p, q) satisfies the condition (4).

Liouville-type theorems for system (2)

Recall the system (2)

$$
\left\{\begin{array}{l}
u_{t}-\Delta u \geq v^{p} \\
v_{t}-\Delta v \geq u^{q}
\end{array}\right.
$$

and the condition (4)

$$
p, q>0, p q>1 \text { and } \max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\} \geq N .
$$

The case of nonnegative solutions:

Theorem 2

Let $p, q>0$, then the system (2) has no nontrivial, nonnegative, classical solution in $\mathbb{R}^{N} \times \mathbb{R}$ if and only if (p, q) satisfies the condition (4).

Liouville-type theorems for system (2)

The case of positive solutions:

Liouville-type theorems for system (2)

The case of positive solutions:

Theorem 3

The problem (2) has no positive classical solution in $\mathbb{R}^{N} \times \mathbb{R}$ if and only if (p, q) is in one of the following ranges

- $p \leq 0$ or $q \leq 0$.
- $p, q>0$ and $p q<1$.
- $p, q>0, p q>1$ and $\max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\} \geq N$.

Liouville-type theorems for system (2)

The case of positive solutions:

Theorem 3

The problem (2) has no positive classical solution in $\mathbb{R}^{N} \times \mathbb{R}$ if and only if (p, q) is in one of the following ranges

- $p \leq 0$ or $q \leq 0$.
- $p, q>0$ and $p q<1$.
- $p, q>0, p q>1$ and $\max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\} \geq N$.

Content

(1) Introduction

(2) Our results
(3) The approaches

4 System involving the fractional Laplacian

Proof of Theorem 1

As mentioned before, our contribution is the proof of nonexistence result for

$$
w_{t}-\Delta w \geq w^{p}
$$

in the case $p<1$. Remark that, unlike the case $p>1$ where one can use the test-function method, the case $p<1$ requires another approach. We deal with this case by using a suitable change of variable and developing the argument of maximum principle inspired by Cheng, Huang and Li^{1}

[^15]
Proof of Theorem 1

As mentioned before, our contribution is the proof of nonexistence result for

$$
w_{t}-\Delta w \geq w^{p}
$$

in the case $p<1$. Remark that, unlike the case $p>1$ where one can use the test-function method, the case $p<1$ requires another approach. We deal with this case by using a suitable change of variable and developing the argument of maximum principle inspired by Cheng, Huang and Li^{1}

[^16]
Proof of Theorem 1

Step 1: Assume $p<1$ and suppose in contrary that (1) has a positive classical solution w in $\mathbb{R}^{N} \times \mathbb{R}$.

Proof of Theorem 1

Step 1: Assume $p<1$ and suppose in contrary that (1) has a positive classical solution w in $\mathbb{R}^{N} \times \mathbb{R}$.
Set $z:=w^{-1}$, then (1) becomes

$$
-z_{t}+\Delta z-2 \frac{|\nabla z|^{2}}{z} \geq z^{2-p}
$$

Proof of Theorem 1

Step 1: Assume $p<1$ and suppose in contrary that (1) has a positive classical solution w in $\mathbb{R}^{N} \times \mathbb{R}$.
Set $z:=w^{-1}$, then (1) becomes

$$
-z_{t}+\Delta z-2 \frac{|\nabla z|^{2}}{z} \geq z^{2-p}
$$

Step 2: Let $R>0$, put $z_{R}(x, t)=z(x, t) \phi_{R}(x, t)$, where ϕ_{R} is a suitable cut-off function and then there exists $\left(x_{R}, t_{R}\right)$ s.t $z_{R}\left(x_{R}, t_{R}\right)=\max _{\mathbb{R}^{N} \times \mathbb{R}} z_{R}(x, t)$.

Proof of Theorem 1

Step 1: Assume $p<1$ and suppose in contrary that (1) has a positive classical solution w in $\mathbb{R}^{N} \times \mathbb{R}$.
Set $z:=w^{-1}$, then (1) becomes

$$
-z_{t}+\Delta z-2 \frac{|\nabla z|^{2}}{z} \geq z^{2-p}
$$

Step 2: Let $R>0$, put $z_{R}(x, t)=z(x, t) \phi_{R}(x, t)$, where ϕ_{R} is a suitable cut-off function and then there exists $\left(x_{R}, t_{R}\right)$ s.t
$z_{R}\left(x_{R}, t_{R}\right)=\max _{\mathbb{R}^{N} \times \mathbb{R}} z_{R}(x, t)$. By using the maximum argument, we arrive at

$$
z_{R}^{1-p}\left(x_{R}, t_{R}\right) \leq C R^{-2}
$$

Proof of Theorem 1

Step 1: Assume $p<1$ and suppose in contrary that (1) has a positive classical solution w in $\mathbb{R}^{N} \times \mathbb{R}$.
Set $z:=w^{-1}$, then (1) becomes

$$
-z_{t}+\Delta z-2 \frac{|\nabla z|^{2}}{z} \geq z^{2-p}
$$

Step 2: Let $R>0$, put $z_{R}(x, t)=z(x, t) \phi_{R}(x, t)$, where ϕ_{R} is a suitable cut-off function and then there exists (x_{R}, t_{R}) s.t
$z_{R}\left(x_{R}, t_{R}\right)=\max _{\mathbb{R}^{N} \times \mathbb{R}} z_{R}(x, t)$. By using the maximum argument, we arrive at

$$
z_{R}^{1-p}\left(x_{R}, t_{R}\right) \leq C R^{-2}
$$

Letting $R \rightarrow \infty$ we have $z_{R}\left(x_{R}, t_{R}\right) \rightarrow 0$ as $R \rightarrow \infty$. We obtain a contradiction since $z_{R}\left(x_{R}, t_{R}\right) \rightarrow \sup z>0$.

Proof of Theorem 1

Step 1: Assume $p<1$ and suppose in contrary that (1) has a positive classical solution w in $\mathbb{R}^{N} \times \mathbb{R}$.
Set $z:=w^{-1}$, then (1) becomes

$$
-z_{t}+\Delta z-2 \frac{|\nabla z|^{2}}{z} \geq z^{2-p}
$$

Step 2: Let $R>0$, put $z_{R}(x, t)=z(x, t) \phi_{R}(x, t)$, where ϕ_{R} is a suitable cut-off function and then there exists (x_{R}, t_{R}) s.t
$z_{R}\left(x_{R}, t_{R}\right)=\max _{\mathbb{R}^{N} \times \mathbb{R}} z_{R}(x, t)$. By using the maximum argument, we arrive at

$$
z_{R}^{1-p}\left(x_{R}, t_{R}\right) \leq C R^{-2}
$$

Letting $R \rightarrow \infty$ we have $z_{R}\left(x_{R}, t_{R}\right) \rightarrow 0$ as $R \rightarrow \infty$. We obtain a contradiction since $z_{R}\left(x_{R}, t_{R}\right) \rightarrow \sup z>0$.

Proof of Theorem 2: Existence of nonnegative solutions

When $p q<1$, a nontrivial nonnegative solution (u, v) in $\mathbb{R}^{N} \times \mathbb{R}$ of the following form

$$
(u, v)= \begin{cases}\left(A t^{\alpha}, B t^{\beta}\right) & \text { if } t>0, x \in \mathbb{R}^{N} \\ (0,0) & \text { if } t \leq 0, x \in \mathbb{R}^{N}\end{cases}
$$

Proof of Theorem 2: Existence of nonnegative solutions

When $p q<1$, a nontrivial nonnegative solution (u, v) in $\mathbb{R}^{N} \times \mathbb{R}$ of the following form

$$
(u, v)= \begin{cases}\left(A t^{\alpha}, B t^{\beta}\right) & \text { if } t>0, x \in \mathbb{R}^{N} \\ (0,0) & \text { if } t \leq 0, x \in \mathbb{R}^{N}\end{cases}
$$

When $p q=1$, a positive solution is of the form

$$
(u, v)=\left(\frac{1}{p \beta} e^{p \beta t}, e^{\beta t}\right), \quad \text { where } \beta=p^{-\frac{q}{q+1}}
$$

Proof of Theorem 2: Existence of nonnegative solutions

When $p q<1$, a nontrivial nonnegative solution (u, v) in $\mathbb{R}^{N} \times \mathbb{R}$ of the following form

$$
(u, v)=\left\{\begin{array}{ll}
\left(A t^{\alpha}, B t^{\beta}\right) & \text { if } t>0, x \in \mathbb{R}^{N} \\
(0,0) & \text { if } t \leq 0, x \in \mathbb{R}^{N}
\end{array} .\right.
$$

When $p q=1$, a positive solution is of the form

$$
(u, v)=\left(\frac{1}{p \beta} e^{p \beta t}, e^{\beta t}\right), \quad \text { where } \beta=p^{-\frac{q}{q+1}}
$$

When $p q>1$ and $\max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\}<N$, we have a nontrivial nonnegative solution is of the form

$$
(u, v)= \begin{cases}\left(k t^{-\alpha} e^{-\gamma \frac{1+|x|^{2}}{t}},\right. & \left.l t^{-\beta} e^{-\theta \frac{1+|x|^{2}}{t}}\right) \\ \text { if } t>0, x \in \mathbb{R}^{N} \\ (0,0) & \text { if } t \leq 0, x \in \mathbb{R}^{N}\end{cases}
$$

Proof of Theorem 2: Existence of nonnegative solutions

When $p q<1$, a nontrivial nonnegative solution (u, v) in $\mathbb{R}^{N} \times \mathbb{R}$ of the following form

$$
(u, v)=\left\{\begin{array}{ll}
\left(A t^{\alpha}, B t^{\beta}\right) & \text { if } t>0, x \in \mathbb{R}^{N} \\
(0,0) & \text { if } t \leq 0, x \in \mathbb{R}^{N}
\end{array} .\right.
$$

When $p q=1$, a positive solution is of the form

$$
(u, v)=\left(\frac{1}{p \beta} e^{p \beta t}, e^{\beta t}\right), \quad \text { where } \beta=p^{-\frac{q}{q+1}}
$$

When $p q>1$ and $\max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\}<N$, we have a nontrivial nonnegative solution is of the form

$$
(u, v)= \begin{cases}\left(k t^{-\alpha} e^{-\gamma \frac{1+|x|^{2}}{t}},\right. & \left.l t^{-\beta} e^{-\theta \frac{1+|x|^{2}}{t}}\right) \\ \text { if } t>0, x \in \mathbb{R}^{N} \\ (0,0) & \text { if } t \leq 0, x \in \mathbb{R}^{N}\end{cases}
$$

Proof of Theorem 2: Nonexistence of nonnegative solutions

We prove the nonexistence result by contradiction.

[^17]
Proof of Theorem 2: Nonexistence of nonnegative solutions

We prove the nonexistence result by contradiction. Step 1: By developing the technique in $[\mathrm{EH} 91]^{1}$ and $[\mathrm{Pin} 97]^{2}$, we show that

$$
u(x, t) \geq C t^{-\frac{N}{2}} \log (1+t) e^{-\frac{|x|^{2}}{2 t}}, t \geq t_{1}, x \in \mathbb{R}^{N}
$$

[^18]
Proof of Theorem 2: Nonexistence of nonnegative solutions

We prove the nonexistence result by contradiction.
Step 1: By developing the technique in $[\mathrm{EH} 91]^{1}$ and $[\mathrm{Pin} 97]^{2}$, we show that

$$
u(x, t) \geq C t^{-\frac{N}{2}} \log (1+t) e^{-\frac{|x|^{2}}{2 t}}, t \geq t_{1}, x \in \mathbb{R}^{N}
$$

Step 2: By using a suitable change of variable and a test-function method, we prove that if $p \geq q, U_{R}:=\left\{(x, t): R<|x|<2 R, R^{2}<t<2 R^{2}\right\}$,

$$
\int_{U_{R}} u^{\frac{1}{p}} d x d t \leq C R^{N+2-\frac{2(p+1)}{p(p q-1)}}
$$

[^19]
Proof of Theorem 2: Nonexistence of nonnegative solutions

We prove the nonexistence result by contradiction.
Step 1: By developing the technique in $[\mathrm{EH} 91]^{1}$ and $[\mathrm{Pin} 97]^{2}$, we show that

$$
u(x, t) \geq C t^{-\frac{N}{2}} \log (1+t) e^{-\frac{|x|^{2}}{2 t}}, t \geq t_{1}, x \in \mathbb{R}^{N}
$$

Step 2: By using a suitable change of variable and a test-function method, we prove that if $p \geq q, U_{R}:=\left\{(x, t): R<|x|<2 R, R^{2}<t<2 R^{2}\right\}$,

$$
\int_{U_{R}} u^{\frac{1}{p}} d x d t \leq C R^{N+2-\frac{2(p+1)}{p(p q-1)}}
$$

[^20]
Proof of Theorem 2: Nonexistence

Taking into account Step 1 and Step 2, we arrive at

$$
R^{\frac{2(p+1)}{p(p q-1)}-\frac{N}{p}} \log ^{\frac{1}{p}}\left(1+R^{2}\right) \leq C .
$$

Proof of Theorem 2: Nonexistence

Taking into account Step 1 and Step 2, we arrive at

$$
R^{\frac{2(p+1)}{p(p q-1)}-\frac{N}{p}} \log ^{\frac{1}{p}}\left(1+R^{2}\right) \leq C .
$$

When $p \geq q, \frac{2(p+1)}{p q-1}=\max \left\{\frac{2(q+1)}{p q-1}, \frac{2(p+1)}{p q-1}\right\} \geq N$. Letting $R \rightarrow \infty$, we obtain a contradiction.

Proof of Theorem 2: Nonexistence

Taking into account Step 1 and Step 2, we arrive at

$$
R^{\frac{2(p+1)}{p(p q-1)}-\frac{N}{p}} \log ^{\frac{1}{p}}\left(1+R^{2}\right) \leq C .
$$

When $p \geq q, \frac{2(p+1)}{p q-1}=\max \left\{\frac{2(q+1)}{p q-1}, \frac{2(p+1)}{p q-1}\right\} \geq N$. Letting $R \rightarrow \infty$, we obtain a contradiction.

Proof of Theorem 3: Nonexistence result

On the whole space $\mathbb{R}^{N} \times \mathbb{R}$, we show that the system (2) has no positive solution when $p \leq 0$ or $q \leq 0$ or $p q<1$.

Proof of Theorem 3: Nonexistence result

On the whole space $\mathbb{R}^{N} \times \mathbb{R}$, we show that the system (2) has no positive solution when $p \leq 0$ or $q \leq 0$ or $p q<1$.

- $p=0$ or $q=0$, one equation in the system is of the form $u_{t}-\Delta u \geq 1$ which has no positive solution thanks to Theorem 1.

Proof of Theorem 3: Nonexistence result

On the whole space $\mathbb{R}^{N} \times \mathbb{R}$, we show that the system (2) has no positive solution when $p \leq 0$ or $q \leq 0$ or $p q<1$.

- $p=0$ or $q=0$, one equation in the system is of the form $u_{t}-\Delta u \geq 1$ which has no positive solution thanks to Theorem 1.
- $p \neq 0$ and $q \neq 0$, suppose $p \geq q$. We shall use reduction argument to transform the system into an inequality which has no positive solution.

Proof of Theorem 3: Nonexistence result

On the whole space $\mathbb{R}^{N} \times \mathbb{R}$, we show that the system (2) has no positive solution when $p \leq 0$ or $q \leq 0$ or $p q<1$.

- $p=0$ or $q=0$, one equation in the system is of the form $u_{t}-\Delta u \geq 1$ which has no positive solution thanks to Theorem 1.
- $p \neq 0$ and $q \neq 0$, suppose $p \geq q$. We shall use reduction argument to transform the system into an inequality which has no positive solution. More precisely, when $p, q<0$ or $p>0$ and $p q<1$, we put $w=u+v$ or $w=u^{a} v^{b}$ with $a, b>0, a+b=1$ to obtain an inequality

$$
w_{t}-\Delta w \geq C w^{s}, \text { for some } s<1
$$

Proof of Theorem 3: Nonexistence result

On the whole space $\mathbb{R}^{N} \times \mathbb{R}$, we show that the system (2) has no positive solution when $p \leq 0$ or $q \leq 0$ or $p q<1$.

- $p=0$ or $q=0$, one equation in the system is of the form $u_{t}-\Delta u \geq 1$ which has no positive solution thanks to Theorem 1.
- $p \neq 0$ and $q \neq 0$, suppose $p \geq q$. We shall use reduction argument to transform the system into an inequality which has no positive solution. More precisely, when $p, q<0$ or $p>0$ and $p q<1$, we put $w=u+v$ or $w=u^{a} v^{b}$ with $a, b>0, a+b=1$ to obtain an inequality

$$
w_{t}-\Delta w \geq C w^{s}, \text { for some } s<1
$$

This has no positive solution by Theorem 1.

Proof of Theorem 3: Nonexistence result

On the whole space $\mathbb{R}^{N} \times \mathbb{R}$, we show that the system (2) has no positive solution when $p \leq 0$ or $q \leq 0$ or $p q<1$.

- $p=0$ or $q=0$, one equation in the system is of the form $u_{t}-\Delta u \geq 1$ which has no positive solution thanks to Theorem 1.
- $p \neq 0$ and $q \neq 0$, suppose $p \geq q$. We shall use reduction argument to transform the system into an inequality which has no positive solution. More precisely, when $p, q<0$ or $p>0$ and $p q<1$, we put $w=u+v$ or $w=u^{a} v^{b}$ with $a, b>0, a+b=1$ to obtain an inequality

$$
w_{t}-\Delta w \geq C w^{s}, \text { for some } s<1
$$

This has no positive solution by Theorem 1.

Proof of Theorem 3: Existence result

On the whole space $\mathbb{R}^{N} \times \mathbb{R}$, we show that the system (2) has a positive solution when $p, q>0, p q>1$ and $\max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\}<N$. The proof is based on the technique of Taliaferro ${ }^{1}$.
${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Proof of Theorem 3: Existence result

On the whole space $\mathbb{R}^{N} \times \mathbb{R}$, we show that the system (2) has a positive solution when $p, q>0, p q>1$ and $\max \left\{\frac{2(p+1)}{p q-1}, \frac{2(q+1)}{p q-1}\right\}<N$. The proof is based on the technique of Taliaferro ${ }^{1}$.
${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Proof of Theorem 3: Existence result

Let $\alpha=\frac{2(p+1)}{p q-1}, \beta=\frac{2(q+1)}{p q-1}$,
$U(x, t)=\left(1+|x|^{4}+t^{2}\right)^{-\alpha / 4}, V(x, t)=\left(1+|x|^{4}+t^{2}\right)^{-\beta / 4}$
${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Proof of Theorem 3: Existence result

Let $\alpha=\frac{2(p+1)}{p q-1}, \beta=\frac{2(q+1)}{p q-1}$,
$U(x, t)=\left(1+|x|^{4}+t^{2}\right)^{-\alpha / 4}, V(x, t)=\left(1+|x|^{4}+t^{2}\right)^{-\beta / 4}$ and

$$
\begin{aligned}
& u(x, t)=\iint_{\mathbb{R}^{N} \times \mathbb{R}} G(x-y, t-s) V^{p}(y, s) d y d s \\
& v(x, t)=\iint_{\mathbb{R}^{N} \times \mathbb{R}} G(x-y, t-s) U^{q}(y, s) d y d s .
\end{aligned}
$$

${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Proof of Theorem 3: Existence result

Let $\alpha=\frac{2(p+1)}{p q-1}, \beta=\frac{2(q+1)}{p q-1}$,
$U(x, t)=\left(1+|x|^{4}+t^{2}\right)^{-\alpha / 4}, V(x, t)=\left(1+|x|^{4}+t^{2}\right)^{-\beta / 4}$ and

$$
\begin{aligned}
& u(x, t)=\iint_{\mathbb{R}^{N} \times \mathbb{R}} G(x-y, t-s) V^{p}(y, s) d y d s \\
& v(x, t)=\iint_{\mathbb{R}^{N} \times \mathbb{R}} G(x-y, t-s) U^{q}(y, s) d y d s .
\end{aligned}
$$

On one hand, it follows from Lemma 1 of [Tal09] ${ }^{1}$ that

$$
u_{t}-\Delta u=V^{p}, \quad v_{t}-\Delta v=U^{q} .
$$

${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Proof of Theorem 3: Existence result

Let $\alpha=\frac{2(p+1)}{p q-1}, \beta=\frac{2(q+1)}{p q-1}$,
$U(x, t)=\left(1+|x|^{4}+t^{2}\right)^{-\alpha / 4}, V(x, t)=\left(1+|x|^{4}+t^{2}\right)^{-\beta / 4}$ and

$$
\begin{aligned}
& u(x, t)=\iint_{\mathbb{R}^{N} \times \mathbb{R}} G(x-y, t-s) V^{p}(y, s) d y d s, \\
& v(x, t)=\iint_{\mathbb{R}^{N} \times \mathbb{R}} G(x-y, t-s) U^{q}(y, s) d y d s .
\end{aligned}
$$

On one hand, it follows from Lemma 1 of [Tal09] ${ }^{1}$ that

$$
u_{t}-\Delta u=V^{p}, \quad v_{t}-\Delta v=U^{q} .
$$

On the other hand, using the argument in [Tal09], we have $V \geq c v, U \geq c u$.
${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Proof of Theorem 3: Existence result

Let $\alpha=\frac{2(p+1)}{p q-1}, \beta=\frac{2(q+1)}{p q-1}$,
$U(x, t)=\left(1+|x|^{4}+t^{2}\right)^{-\alpha / 4}, V(x, t)=\left(1+|x|^{4}+t^{2}\right)^{-\beta / 4}$ and

$$
\begin{aligned}
& u(x, t)=\iint_{\mathbb{R}^{N} \times \mathbb{R}} G(x-y, t-s) V^{p}(y, s) d y d s, \\
& v(x, t)=\iint_{\mathbb{R}^{N} \times \mathbb{R}} G(x-y, t-s) U^{q}(y, s) d y d s .
\end{aligned}
$$

On one hand, it follows from Lemma 1 of [Tal09] ${ }^{1}$ that

$$
u_{t}-\Delta u=V^{p}, \quad v_{t}-\Delta v=U^{q} .
$$

On the other hand, using the argument in [Tal09], we have $V \geq c v, U \geq c u$.
${ }^{1}$ Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289-3302.

Proof of Theorem 3: Existence result

Then,

$$
u_{t}-\Delta u \geq c v^{p}, \quad v_{t}-\Delta v \geq c u^{q} .
$$

Proof of Theorem 3: Existence result

Then,

$$
u_{t}-\Delta u \geq c v^{p}, \quad v_{t}-\Delta v \geq c u^{q} .
$$

By making the dilation

$$
u(x, t)=u_{\varepsilon}\left(\varepsilon x, \varepsilon^{2} t\right), v(x, t)=v_{\varepsilon}\left(\varepsilon x, \varepsilon^{2} t\right)
$$

Proof of Theorem 3: Existence result

Then,

$$
u_{t}-\Delta u \geq c v^{p}, \quad v_{t}-\Delta v \geq c u^{q} .
$$

By making the dilation

$$
u(x, t)=u_{\varepsilon}\left(\varepsilon x, \varepsilon^{2} t\right), v(x, t)=v_{\varepsilon}\left(\varepsilon x, \varepsilon^{2} t\right)
$$

we arrive at

$$
\partial_{t} u_{\varepsilon}-\Delta u_{\varepsilon} \geq \varepsilon^{-2} c^{p} v_{\varepsilon}^{p}, \quad \partial_{t} v_{\varepsilon}-\Delta v_{\varepsilon} \geq \varepsilon^{-2} c^{q} u_{\varepsilon}^{q} \quad \text { in } \mathbb{R}^{N} \times \mathbb{R} .
$$

Proof of Theorem 3: Existence result

Then,

$$
u_{t}-\Delta u \geq c v^{p}, \quad v_{t}-\Delta v \geq c u^{q} .
$$

By making the dilation

$$
u(x, t)=u_{\varepsilon}\left(\varepsilon x, \varepsilon^{2} t\right), v(x, t)=v_{\varepsilon}\left(\varepsilon x, \varepsilon^{2} t\right)
$$

we arrive at

$$
\partial_{t} u_{\varepsilon}-\Delta u_{\varepsilon} \geq \varepsilon^{-2} c^{p} v_{\varepsilon}^{p}, \quad \partial_{t} v_{\varepsilon}-\Delta v_{\varepsilon} \geq \varepsilon^{-2} c^{q} u_{\varepsilon}^{q} \quad \text { in } \mathbb{R}^{N} \times \mathbb{R} .
$$

Choosing ε small, then $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is a positive solution of the system.

Proof of Theorem 3: Existence result

Then,

$$
u_{t}-\Delta u \geq c v^{p}, \quad v_{t}-\Delta v \geq c u^{q} .
$$

By making the dilation

$$
u(x, t)=u_{\varepsilon}\left(\varepsilon x, \varepsilon^{2} t\right), v(x, t)=v_{\varepsilon}\left(\varepsilon x, \varepsilon^{2} t\right)
$$

we arrive at

$$
\partial_{t} u_{\varepsilon}-\Delta u_{\varepsilon} \geq \varepsilon^{-2} c^{p} v_{\varepsilon}^{p}, \quad \partial_{t} v_{\varepsilon}-\Delta v_{\varepsilon} \geq \varepsilon^{-2} c^{q} u_{\varepsilon}^{q} \quad \text { in } \mathbb{R}^{N} \times \mathbb{R} .
$$

Choosing ε small, then $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is a positive solution of the system.

Content

（1）Introduction

（2）Our results

（3）The approaches

44 System involving the fractional Laplacian

We address a similar question on the optimal Liouville-type theorems for the positive or nonnegative solutions of the fractional parabolic equation

$$
u_{t}+(-\Delta)^{s} u \geq u^{p} \text { in } \mathbb{R}^{N} \times I
$$

and fractional parabolic system

$$
\left\{\begin{array}{l}
u_{t}+(-\Delta)^{s} u \geq v^{p} \text { in } \mathbb{R}^{N} \times 1 \\
v_{t}+(-\Delta)^{s} v \geq u^{q} \text { in } \mathbb{R}^{N} \times 1
\end{array}\right.
$$

where the exponents p and q are real numbers and $(-\Delta)^{s}$ is the fractional Laplacian with $0<s<1$,

We address a similar question on the optimal Liouville-type theorems for the positive or nonnegative solutions of the fractional parabolic equation

$$
u_{t}+(-\Delta)^{s} u \geq u^{p} \text { in } \mathbb{R}^{N} \times I
$$

and fractional parabolic system

$$
\left\{\begin{array}{l}
u_{t}+(-\Delta)^{s} u \geq v^{p} \text { in } \mathbb{R}^{N} \times 1 \\
v_{t}+(-\Delta)^{s} v \geq u^{q} \text { in } \mathbb{R}^{N} \times 1
\end{array}\right.
$$

where the exponents p and q are real numbers and $(-\Delta)^{s}$ is the fractional Laplacian with $0<s<1$, defined by

$$
(-\Delta)^{s} u(x)=c_{N, s} P . V . \int_{\mathbb{R}^{N}} \frac{u(x)-u(\xi)}{|x-\xi|^{N+2 s}} d \xi
$$

Here $c_{N, s}$ is the normalization constant and $P . V$. stands for the Cauchy principle value. This operator is also defined by using the Fourier transform

$$
\mathcal{F}\left((-\Delta)^{s} u\right)(\xi)=|\xi|^{2 s} \mathcal{F} u(\xi)
$$

where $\mathcal{F} u$ is the Fourier transform of u.

We address a similar question on the optimal Liouville-type theorems for the positive or nonnegative solutions of the fractional parabolic equation

$$
u_{t}+(-\Delta)^{s} u \geq u^{p} \text { in } \mathbb{R}^{N} \times I
$$

and fractional parabolic system

$$
\left\{\begin{array}{l}
u_{t}+(-\Delta)^{s} u \geq v^{p} \text { in } \mathbb{R}^{N} \times 1 \\
v_{t}+(-\Delta)^{s} v \geq u^{q} \text { in } \mathbb{R}^{N} \times 1
\end{array}\right.
$$

where the exponents p and q are real numbers and $(-\Delta)^{s}$ is the fractional Laplacian with $0<s<1$, defined by

$$
(-\Delta)^{s} u(x)=c_{N, s} P . V . \int_{\mathbb{R}^{N}} \frac{u(x)-u(\xi)}{|x-\xi|^{N+2 s}} d \xi
$$

Here $c_{N, s}$ is the normalization constant and $P . V$. stands for the Cauchy principle value. This operator is also defined by using the Fourier transform

$$
\mathcal{F}\left((-\Delta)^{s} u\right)(\xi)=|\xi|^{2 s} \mathcal{F} u(\xi)
$$

where $\mathcal{F} u$ is the Fourier transform of u.

Results

We also obtain similar results as in the case of Laplace operator [DN21] ${ }^{1}$
${ }^{1}$ Duong, Anh Tuan and Nguyen, Van Hoang, Liouville Type Theorems for Fractional Parabolic Problems, Journal of Dynamics and Differential Equations, (2021) $\equiv, 1-14$

Results

We also obtain similar results as in the case of Laplace operator [DN21] ${ }^{1}$

Theorem 4

Assume that $p>0$. Then the equation has no nontrivial nonnegative solution in $\mathbb{R}^{N} \times \mathbb{R}$ if and only if

$$
1<p \leq \frac{N+2 s}{N}
$$

${ }^{1}$ Duong, Anh Tuan and Nguyen, Van Hoang, Liouville Type Theorems for Fractional Parabolic Problems, Journal of Dynamics and Differential Equations, (2021) $\equiv=1-14$

Results

We also obtain similar results as in the case of Laplace operator [DN21] ${ }^{1}$

Theorem 4

Assume that $p>0$. Then the equation has no nontrivial nonnegative solution in $\mathbb{R}^{N} \times \mathbb{R}$ if and only if

$$
1<p \leq \frac{N+2 s}{N}
$$

Theorem 5

The equation has no positive solution in $\mathbb{R}^{N} \times \mathbb{R}$ if and only if

$$
p<1 \text { or } 1<p \leq \frac{N+2 s}{N}
$$

${ }^{1}$ Duong, Anh Tuan and Nguyen, Van Hoang, Liouville Type Theorems for Fractional Parabolic Problems, Journal of Dynamics and Differential Equations, (2021) $\equiv 1-14$

Results

We also obtain similar results as in the case of Laplace operator [DN21] ${ }^{1}$

Theorem 4

Assume that $p>0$. Then the equation has no nontrivial nonnegative solution in $\mathbb{R}^{N} \times \mathbb{R}$ if and only if

$$
1<p \leq \frac{N+2 s}{N}
$$

Theorem 5

The equation has no positive solution in $\mathbb{R}^{N} \times \mathbb{R}$ if and only if

$$
p<1 \text { or } 1<p \leq \frac{N+2 s}{N}
$$

${ }^{1}$ Duong, Anh Tuan and Nguyen, Van Hoang, Liouville Type Theorems for Fractional Parabolic Problems, Journal of Dynamics and Differential Equations, (2021) $\equiv 1-14$

Theorem 6

The system has no positive solution in $\mathbb{R}^{N} \times \mathbb{R}$ if (p, q) is in one of the following ranges

- $p \leq 0$ or $q \leq 0$.
- $p, q>0$ and $p q<1$.
- $p, q>0, p q>1$ and $\max \left\{\frac{2 s(p+1)}{p q-1}, \frac{2 s(q+1)}{p q-1}\right\}>N$.

In addition, the system has positive solutions in $\mathbb{R}^{N} \times \mathbb{R}$ if

$$
p, q>0, p q>1 \text { and } \max \left\{\frac{2 s(p+1)}{p q-1}, \frac{2 s(q+1)}{p q-1}\right\}<N .
$$

Notice that the critical case is left open. $[\mathrm{KO} 17]^{1}$

[^21]
THANK YOU VERY MUCH FOR YOUR ATTENTION

[^0]: ${ }^{1}$ Fujita, H. On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124 (1966).
 ${ }^{2}$ Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1-384.
 ${ }^{3}$ Kurta, V. V. A Liouville comparison principle for solutions of quasilinear singular parabolic inequalities. Adv. Nonlinear Anal. 4, 1 (2015), 1-11.

[^1]: ${ }^{1}$ Fujita, H. On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124 (1966).
 ${ }^{2}$ Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1-384.
 ${ }^{3}$ Kurta, V. V. A Liouville comparison principle for solutions of quasilinear singular parabolic inequalities. Adv. Nonlinear Anal. 4, 1 (2015), 1-11.

[^2]: ${ }^{1}$ Fujita, H . On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124 (1966).
 ${ }^{2}$ Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1-384.
 ${ }^{3}$ Kurta, V. V. A Liouville comparison principle for solutions of quasilinear singular parabolic inequalities. Adv. Nonlinear Anal. 4, 1 (2015), 1-11.

[^3]: ${ }^{1}$ Fujita, H . On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124 (1966).
 ${ }^{2}$ Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1-384.
 ${ }^{3}$ Kurta, V. V. A Liouville comparison principle for solutions of quasilinear singular parabolic inequalities. Adv. Nonlinear Anal. 4, 1 (2015), 1-11.

[^4]: ${ }^{1}$ Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1-384.
 ${ }^{2}$ Quittner, P., and Souplet, P. Superlinear parabolic problems Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2007. Blow-up, global existence and steady states.

[^5]: ${ }^{1}$ Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1-384.
 ${ }^{2}$ Quittner, P., and Souplet, P. Superlinear parabolic problems Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2007. Blow-up, global existence and steady states.

[^6]: ${ }^{1}$ Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1-384.
 ${ }^{2}$ Quittner, P., and Souplet, P. Superlinear parabolic problems Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2007. Blow-up, global existence and steady states.

[^7]: ${ }^{3}$ Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), 176-202.

[^8]: ${ }^{3}$ Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), 176-202.

[^9]: ${ }^{3}$ Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), 176-202.

[^10]: ${ }^{1}$ Armstrong, S. N., and Sirakov, B. Nonexistence of positive supersolutions of elliptic equations via the maximum principle. Comm. Partial Differential Equations 36, 11 (2011), 2011-2047.

[^11]: ${ }^{1}$ Armstrong, S. N., and Sirakov, B. Nonexistence of positive supersolutions of elliptic equations via the maximum principle. Comm. Partial Differential Equations 36, 11 (2011), 2011-2047.

[^12]: ${ }^{1}$ Duong, Anh Tuan; Phan, Quoc Hung Optimal Liouville-type theorems for a system of parabolic inequalities. Commun. Contemp. Math. 22 (2020), no. 6,=1950043, 22 pp.

[^13]: ${ }^{1}$ Duong, Anh Tuan; Phan, Quoc Hung Optimal Liouville-type theorems for a system of parabolic inequalities. Commun. Contemp. Math. 22 (2020), no. 6, $=1950043,22$ pp.

[^14]: ${ }^{1}$ Duong, Anh Tuan; Phan, Quoc Hung Optimal Liouville-type theorems for a system of parabolic inequalities. Commun. Contemp. Math. 22 (2020), no. 6, $=1950043,22$ pp.

[^15]: ${ }^{1}$ Cheng, Z., Huang, G., and Li, C. On the Hardy-Littlewood-Sobolev type systems. Commun. Pure Appl. Anal. 15, 6 (2016), 2059-2074.

[^16]: ${ }^{1}$ Cheng, Z., Huang, G., and Li, C. On the Hardy-Littlewood-Sobolev type systems. Commun. Pure Appl. Anal. 15, 6 (2016), 2059-2074.

[^17]: ${ }^{1}$ Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), 176-202.
 ${ }^{2}$ Pinsky, R. G. Existence and nonexistence of global solutions for $u_{t}=\Delta u+a(x) u^{p}$ in \mathbb{R}^{d}. J. Differential Equations 133, 1 (1997), 152-177.

[^18]: ${ }^{1}$ Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), 176-202.
 ${ }^{2}$ Pinsky, R. G. Existence and nonexistence of global solutions for $u_{t}=\Delta u+a(x) u^{p}$ in \mathbb{R}^{d}. J. Differential Equations 133, 1 (1997), 152-177.

[^19]: ${ }^{1}$ Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), 176-202.
 ${ }^{2}$ Pinsky, R. G. Existence and nonexistence of global solutions for $u_{t}=\Delta u+a(x) u^{p}$ in \mathbb{R}^{d}. J. Differential Equations 133, 1 (1997), 152-177.

[^20]: ${ }^{1}$ Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), 176-202.
 ${ }^{2}$ Pinsky, R. G. Existence and nonexistence of global solutions for $u_{t}=\Delta u+a(x) u^{p}$ in \mathbb{R}^{d}. J. Differential Equations 133, 1 (1997), 152-177.

[^21]: ${ }^{1}$ Kakehi, Tomoyuki; Oshita, Yoshihito; Blowup and global existence of a solution to a semilinear reaction-diffusion system with the fractional Laplacian. Math. J. Okayama Univ. 59 (2017), [2016 on cover], 175-218.

