Optimal Liouville-type theorems for system of parabolic inequalities

Anh Tuan DUONG Hanoi University of Science and Technology (This talk is based on a joint work with Quoc Hung Phan)

March 3, 2023

< □ > < @ > < 注 > < 注 > ... 注

Introduction	Our results	The approaches	System involving the fractional Laplacian
0000000	0000	000000000	

▲ロ ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 回 ▶

Introduction 0000000	Our results 0000	The approaches	System involving the fractional Laplacian

・ロト・日・・日・・日・ つんの

Introduction 0000000	Our results 0000	The approaches	System involving the fractional Laplacian

Introduction	Our results	The approaches	System involving the frac
0000000	0000	000000000	

4 System involving the fractional Laplacian

2 Our results

3 The approaches

4 System involving the fractional Laplacian

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Our results	The approaches	System involving the fractional Laplacian
000000	0000	000000000	

In this talk, we are concerned with Liouville-type theorems for

$$w_t - \Delta w \ge w^p \quad \text{in } \mathbb{R}^N \times I,$$
 (1)

<> E ► < E ►</p>

Introduction	Our results	The approaches	System involving the fractional Laplacian
000000	0000	000000000	

In this talk, we are concerned with Liouville-type theorems for

$$w_t - \Delta w \ge w^{\rho} \quad \text{in } \mathbb{R}^N \times I,$$
 (1)

and

$$\begin{cases} u_t - \Delta u \ge v^p, \\ v_t - \Delta v \ge u^q \end{cases} \quad \text{in } \mathbb{R}^N \times I, \tag{2}$$

Introduction	Our results	The approaches	System involving the fractional Laplacian
000000	0000	000000000	

In this talk, we are concerned with Liouville-type theorems for

$$w_t - \Delta w \ge w^p \quad \text{in } \mathbb{R}^N imes I,$$
 (1)

and

$$\begin{cases} u_t - \Delta u \ge v^p, \\ v_t - \Delta v \ge u^q \end{cases} \quad \text{in } \mathbb{R}^N \times I, \tag{2}$$

where the exponents p and q are real numbers, I is an interval of \mathbb{R} .

Introduction	Our results	The approaches	System involving the fractional Laplacian
000000	0000	000000000	

In this talk, we are concerned with Liouville-type theorems for

$$w_t - \Delta w \ge w^p \quad \text{in } \mathbb{R}^N imes I,$$
 (1)

and

$$\begin{cases} u_t - \Delta u \ge v^p, \\ v_t - \Delta v \ge u^q \end{cases} \quad \text{in } \mathbb{R}^N \times I, \tag{2}$$

where the exponents p and q are real numbers, I is an interval of \mathbb{R} . We propose to study

- (a) Liouville-type theorems for nonnegative solutions in whole space $\mathbb{R}^N \times \mathbb{R}$ and in $\mathbb{R}^N \times (0, \infty)$, provided that p, q > 0.
- (b) Liouville-type theorems for positive solutions in $\mathbb{R}^N \times \mathbb{R}$ and in $\mathbb{R}^N \times (0, \infty)$ with real exponents p, q.

Introduction	Our results	The approaches	System involving the fractional Laplacian
000000	0000	000000000	

In this talk, we are concerned with Liouville-type theorems for

$$w_t - \Delta w \ge w^p \quad \text{in } \mathbb{R}^N imes I,$$
 (1)

and

$$\begin{cases} u_t - \Delta u \ge v^p, \\ v_t - \Delta v \ge u^q \end{cases} \quad \text{in } \mathbb{R}^N \times I, \tag{2}$$

where the exponents p and q are real numbers, I is an interval of \mathbb{R} . We propose to study

- (a) Liouville-type theorems for nonnegative solutions in whole space $\mathbb{R}^N \times \mathbb{R}$ and in $\mathbb{R}^N \times (0, \infty)$, provided that p, q > 0.
- (b) Liouville-type theorems for positive solutions in $\mathbb{R}^N \times \mathbb{R}$ and in $\mathbb{R}^N \times (0, \infty)$ with real exponents p, q.

The well-known Fujita result ensures the nonexistence of nontrivial nonnegative solution of problem (1) in $\mathbb{R}^N \times (0, \infty)$ under the condition 1 , see [Fuj66]¹ [MP01]².

¹Fujita, H. On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124 (1966).

²Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1–384.

³Kurta, V. V. A Liouville comparison principle for solutions of quasilinear singular parabolic inequalities. Adv. Nonlinear Anal. 4, 1 (2015), 1–11.

The well-known Fujita result ensures the nonexistence of nontrivial nonnegative solution of problem (1) in $\mathbb{R}^N \times (0, \infty)$ under the condition 1 , see [Fuj66]¹ [MP01]². $When <math>p > \frac{N+2}{N}$, a nonnegative solution is, see [Kur15]³ $w(x,t) = \begin{cases} kt^{-\frac{1}{p-1}}e^{-\gamma \frac{1+|x|^2}{t}} & \text{if } t > 0, \ x \in \mathbb{R}^N \\ 0 & \text{if } t \leq 0, \ x \in \mathbb{R}^N \end{cases}$.

¹Fujita, H. On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124 (1966).

²Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1–384.

The well-known Fujita result ensures the nonexistence of nontrivial nonnegative solution of problem (1) in $\mathbb{R}^N \times (0, \infty)$ under the condition 1 , see [Fuj66]¹ [MP01]². $When <math>p > \frac{N+2}{N}$, a nonnegative solution is, see [Kur15]³ $w(x,t) = \begin{cases} kt^{-\frac{1}{p-1}}e^{-\gamma \frac{1+|x|^2}{t}} & \text{if } t > 0, x \in \mathbb{R}^N \\ 0 & \text{if } t \leq 0, x \in \mathbb{R}^N \end{cases}$. When $0 , <math>w(x,t) = \begin{cases} t^{\frac{1}{1-p}} & \text{if } t > 0, \\ 0 & \text{if } t \leq 0 \end{cases}$ is a nonnegative solution.

¹Fujita, H. On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124 (1966).

²Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1–384.

The well-known Fujita result ensures the nonexistence of nontrivial nonnegative solution of problem (1) in $\mathbb{R}^N \times (0, \infty)$ under the condition 1 , see [Fuj66]¹ [MP01]². $When <math>p > \frac{N+2}{N}$, a nonnegative solution is, see [Kur15]³ $w(x,t) = \begin{cases} kt^{-\frac{1}{p-1}}e^{-\gamma \frac{1+|x|^2}{t}} & \text{if } t > 0, x \in \mathbb{R}^N \\ 0 & \text{if } t \leq 0, x \in \mathbb{R}^N \end{cases}$. When $0 , <math>w(x,t) = \begin{cases} t^{\frac{1}{1-p}} & \text{if } t > 0, \\ 0 & \text{if } t \leq 0 \end{cases}$ is a nonnegative solution.

¹Fujita, H. On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124 (1966).

²Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1–384.

System involving the fractional Laplacian 00000

Positive solutions of problem (1)

Concerning the positive solutions of (1):

Concerning the positive solutions of (1): When 1 : nonexistence of positive solutions (Fujita result).

Concerning the positive solutions of (1): When 1 : nonexistence of positive solutions (Fujita result). $When <math>p > \frac{N+2}{N}$: existence of positive solutions [Tal09]¹.

Concerning the positive solutions of (1): When 1 : nonexistence of positive solutions (Fujita result). $When <math>p > \frac{N+2}{N}$: existence of positive solutions [Tal09]¹. When p = 1, a positive solution is $w(x, t) = e^t$.

Concerning the positive solutions of (1): When 1 : nonexistence of positive solutions (Fujita result). $When <math>p > \frac{N+2}{N}$: existence of positive solutions [Tal09]¹. When p = 1, a positive solution is $w(x, t) = e^t$. The range $-\infty has not been treated in the literature.$

Concerning the positive solutions of (1): When 1 : nonexistence of positive solutions (Fujita result). $When <math>p > \frac{N+2}{N}$: existence of positive solutions [Tal09]¹. When p = 1, a positive solution is $w(x, t) = e^t$. The range $-\infty has not been treated in the literature.$

Nonnegative solutions of system (2)

By using the rescaled test-function method, one can deduce the nonexistence of nontrivial nonnegative solutions of (2) in $\mathbb{R}^N \times \mathbb{R}$ in the range

$$p,q>1$$
 and $\max\left\{rac{2(p+1)}{pq-1},rac{2(q+1)}{pq-1}
ight\}\geq N.^{1/2}$

²Quittner, P., and Souplet, P. Superlinear parabolic problems Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2007. Blow-up, global existence and steady states.

¹Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1–384.

Nonnegative solutions of system (2)

By using the rescaled test-function method, one can deduce the nonexistence of nontrivial nonnegative solutions of (2) in $\mathbb{R}^N \times \mathbb{R}$ in the range

$$p, q > 1$$
 and $\max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}
ight\} \ge N.^{1/2}$

However, the Liouville-type theorem for the case $p \leq 1$ and/or $q \leq 1$ is still unknown.

¹Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1–384.

Nonnegative solutions of system (2)

By using the rescaled test-function method, one can deduce the nonexistence of nontrivial nonnegative solutions of (2) in $\mathbb{R}^N \times \mathbb{R}$ in the range

$$p, q > 1$$
 and $\max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}
ight\} \ge N.^{1/2}$

However, the Liouville-type theorem for the case $p \leq 1$ and/or $q \leq 1$ is still unknown.

¹Mitidieri, E., and Pohozaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234 (2001), 1–384.

Our results

Nonnegative solutions of system (2)

Under an additional assumption that solutions are spatially bounded, Escobedo and Herrero ³ proved a Liouville-type theorem for nonnegative solutions of parabolic system

$$\begin{cases} u_t - \Delta u = v^p, \\ v_t - \Delta v = u^q \end{cases}$$
(3)

in $\mathbb{R}^N imes (0,\infty)$,

³Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), \pm 76–202. (\equiv)

Our results

Nonnegative solutions of system (2)

Under an additional assumption that solutions are spatially bounded, Escobedo and Herrero ³ proved a Liouville-type theorem for nonnegative solutions of parabolic system

$$\begin{cases} u_t - \Delta u = v^p, \\ v_t - \Delta v = u^q \end{cases}$$
(3)

in $\mathbb{R}^N \times (0,\infty)$, where the range of nonexistence of nontrivial nonnegative solution is

$$p, q > 0, pq > 1 \text{ and } \max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}\right\} \ge N.$$
 (4)

³Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), \pm 76–202. () \approx (

Himeji conference on PDEs 2023

Our results

Nonnegative solutions of system (2)

Under an additional assumption that solutions are spatially bounded, Escobedo and Herrero ³ proved a Liouville-type theorem for nonnegative solutions of parabolic system

$$\begin{cases} u_t - \Delta u = v^p, \\ v_t - \Delta v = u^q \end{cases}$$
(3)

in $\mathbb{R}^N \times (0,\infty)$, where the range of nonexistence of nontrivial nonnegative solution is

$$p, q > 0, pq > 1 \text{ and } \max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}\right\} \ge N.$$
 (4)

³Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), \pm 76–202. () \approx (

Himeji conference on PDEs 2023

Positive solutions of system (2)

If we look for stationary positive solutions, then by the result of Armstrong and Sirakov 1, the optimal range of the existence is

$$p, q > 0, \quad pq > 1 \text{ and } \max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}\right\} < N-2.$$
 (5)

¹Armstrong, S. N., and Sirakov, B. Nonexistence of positive supersolutions of elliptic equations via the maximum principle. Comm. Partial Differential Equations 36, 11 (2011), 2011–2047.

Positive solutions of system (2)

If we look for stationary positive solutions, then by the result of Armstrong and Sirakov $^1,\, the \,\, optimal \,\, range \,\, of \,\, the existence \,\, is$

$$p,q > 0, \quad pq > 1 \text{ and } \max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}
ight\} < N-2.$$
 (5)

In general case where solutions can be non-stationary, the range (5) is actually not optimal for the existence of positive solutions of (2).

¹Armstrong, S. N., and Sirakov, B. Nonexistence of positive supersolutions of elliptic equations via the maximum principle. Comm. Partial Differential Equations 36, 11 (2011), 2011–2047.

Positive solutions of system (2)

If we look for stationary positive solutions, then by the result of Armstrong and Sirakov $^1,\, the \,\, optimal \,\, range \,\, of \,\, the existence \,\, is$

$$p,q > 0, \quad pq > 1 \text{ and } \max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}
ight\} < N-2.$$
 (5)

In general case where solutions can be non-stationary, the range (5) is actually not optimal for the existence of positive solutions of (2).

¹Armstrong, S. N., and Sirakov, B. Nonexistence of positive supersolutions of elliptic equations via the maximum principle. Comm. Partial Differential Equations 36, 11 (2011), 2011–2047.

3 The approaches

4 System involving the fractional Laplacian

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Our results

The approaches

System involving the fractional Laplacian 00000

Liouville-type theorems for (1)

The following results are obtained in the joint-work with Quoc Hung Phan [DP21].¹

¹Duong, Anh Tuan; Phan, Quoc Hung Optimal Liouville-type theorems for a system of parabolic inequalities. Commun. Contemp. Math. 22 (2020), no. 6,=1950043, 22 pp A C

Liouville-type theorems for (1)

The following results are obtained in the joint-work with Quoc Hung Phan [DP21].¹

The case of positive solutions:

¹Duong, Anh Tuan; Phan, Quoc Hung Optimal Liouville-type theorems for a system of parabolic inequalities. Commun. Contemp. Math. 22 (2020), no. 6,=1950043, 22 pp A C

Our results

Liouville-type theorems for (1)

The following results are obtained in the joint-work with Quoc Hung Phan [DP21].¹

The case of positive solutions:

Theorem 1

The problem

$$w_t - \Delta w \ge w^p$$

has no positive classical solution in $\mathbb{R}^N \times \mathbb{R}$ if and only if

 $p \in (-\infty, 1) \cup (1, (N+2)/N].$

¹Duong, Anh Tuan; Phan, Quoc Hung Optimal Liouville-type theorems for a system of parabolic inequalities. Commun. Contemp. Math. 22 (2020), no. 6,=1950043, 22 pp. Himeji conference on PDEs 2023 Our results

Liouville-type theorems for (1)

The following results are obtained in the joint-work with Quoc Hung Phan [DP21].¹

The case of positive solutions:

Theorem 1

The problem

$$w_t - \Delta w \ge w^p$$

has no positive classical solution in $\mathbb{R}^N \times \mathbb{R}$ if and only if

 $p \in (-\infty, 1) \cup (1, (N+2)/N].$

¹Duong, Anh Tuan; Phan, Quoc Hung Optimal Liouville-type theorems for a system of parabolic inequalities. Commun. Contemp. Math. 22 (2020), no. 6,=1950043, 22 pp. Himeji conference on PDEs 2023

Our results

System involving the fractional Laplacian 00000

Liouville-type theorems for system (2)

Recall the system (2)

$$\begin{cases} u_t - \Delta u \ge v^p \\ v_t - \Delta v \ge u^q \end{cases}$$

Himeji conference on PDEs 2023

æ

イロト イ団ト イヨト イヨト

Our results

System involving the fractional Laplacian 00000

< ロ > < 同 > < 三 > < 三 >

Liouville-type theorems for system (2)

Recall the system (2)

$$\begin{cases} u_t - \Delta u \ge v^p \\ v_t - \Delta v \ge u^q \end{cases}$$

and the condition (4)

$$p,q>0, pq>1$$
 and $\max\left\{rac{2(p+1)}{pq-1},rac{2(q+1)}{pq-1}
ight\}\geq N.$

Our results

The approaches

System involving the fractional Laplacian 00000

Liouville-type theorems for system (2)

Recall the system (2)

$$\begin{cases} u_t - \Delta u \ge v^p \\ v_t - \Delta v \ge u^q \end{cases}$$

and the condition (4)

$$p,q>0, pq>1$$
 and $\max\left\{rac{2(p+1)}{pq-1},rac{2(q+1)}{pq-1}
ight\}\geq N.$

The case of nonnegative solutions:

Our results

System involving the fractional Laplacian 00000

Liouville-type theorems for system (2)

Recall the system (2)

$$\begin{cases} u_t - \Delta u \ge v^p \\ v_t - \Delta v \ge u^q \end{cases}$$

and the condition (4)

$$p,q>0,\ pq>1$$
 and $\max\left\{rac{2(p+1)}{pq-1},rac{2(q+1)}{pq-1}
ight\}\geq N.$

The case of nonnegative solutions:

Theorem 2

Let p, q > 0, then the system (2) has no nontrivial, nonnegative, classical solution in $\mathbb{R}^N \times \mathbb{R}$ if and only if (p, q) satisfies the condition (4).

Our results

System involving the fractional Laplacian 00000

Liouville-type theorems for system (2)

Recall the system (2)

$$\begin{cases} u_t - \Delta u \ge v^p \\ v_t - \Delta v \ge u^q \end{cases}$$

and the condition (4)

$$p,q>0,\ pq>1$$
 and $\max\left\{rac{2(p+1)}{pq-1},rac{2(q+1)}{pq-1}
ight\}\geq N.$

The case of nonnegative solutions:

Theorem 2

Let p, q > 0, then the system (2) has no nontrivial, nonnegative, classical solution in $\mathbb{R}^N \times \mathbb{R}$ if and only if (p, q) satisfies the condition (4).

System involving the fractional Laplacian 00000

Liouville-type theorems for system (2)

The case of positive solutions:

Liouville-type theorems for system (2)

The case of positive solutions:

Theorem 3

The problem (2) has no positive classical solution in $\mathbb{R}^N \times \mathbb{R}$ if and only if (p,q) is in one of the following ranges

- $p \le 0$ or $q \le 0$.
- *p*, *q* > 0 and *pq* < 1.

•
$$p, q > 0, pq > 1$$
 and $\max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}\right\} \ge N.$

Liouville-type theorems for system (2)

The case of positive solutions:

Theorem 3

The problem (2) has no positive classical solution in $\mathbb{R}^N \times \mathbb{R}$ if and only if (p,q) is in one of the following ranges

- $p \le 0$ or $q \le 0$.
- *p*, *q* > 0 and *pq* < 1.

•
$$p, q > 0, pq > 1$$
 and $\max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}\right\} \ge N.$

3 The approaches

4 System involving the fractional Laplacian

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

As mentioned before, our contribution is the proof of nonexistence result for

$$w_t - \Delta w \ge w^p$$

in the case p < 1. Remark that, unlike the case p > 1 where one can use the test-function method, the case p < 1 requires another approach. We deal with this case by using a suitable change of variable and developing the argument of maximum principle inspired by Cheng, Huang and Li¹

¹Cheng, Z., Huang, G., and Li, C. On the Hardy-Littlewood-Sobolev type systems. Commun. Pure Appl. Anal. 15, 6 (2016), 2059–2074.

As mentioned before, our contribution is the proof of nonexistence result for

$$w_t - \Delta w \ge w^p$$

in the case p < 1. Remark that, unlike the case p > 1 where one can use the test-function method, the case p < 1 requires another approach. We deal with this case by using a suitable change of variable and developing the argument of maximum principle inspired by Cheng, Huang and Li¹

¹Cheng, Z., Huang, G., and Li, C. On the Hardy-Littlewood-Sobolev type systems. Commun. Pure Appl. Anal. 15, 6 (2016), 2059–2074.

Step 1: Assume p < 1 and suppose in contrary that (1) has a positive classical solution w in $\mathbb{R}^N \times \mathbb{R}$.

(日)

Step 1: Assume p < 1 and suppose in contrary that (1) has a positive classical solution w in $\mathbb{R}^N \times \mathbb{R}$. Set $z := w^{-1}$, then (1) becomes

$$-z_t + \Delta z - 2\frac{|\nabla z|^2}{z} \ge z^{2-p}.$$

(日)

Step 1: Assume p < 1 and suppose in contrary that (1) has a positive classical solution w in $\mathbb{R}^N \times \mathbb{R}$. Set $z := w^{-1}$, then (1) becomes

$$-z_t + \Delta z - 2\frac{|\nabla z|^2}{z} \ge z^{2-p}.$$

Step 2: Let R > 0, put $z_R(x, t) = z(x, t)\phi_R(x, t)$, where ϕ_R is a suitable cut-off function and then there exists (x_R, t_R) s.t $z_R(x_R, t_R) = \max_{\mathbb{R}^N \times \mathbb{R}} z_R(x, t)$.

Step 1: Assume p < 1 and suppose in contrary that (1) has a positive classical solution w in $\mathbb{R}^N \times \mathbb{R}$. Set $z := w^{-1}$, then (1) becomes

$$-z_t + \Delta z - 2\frac{|\nabla z|^2}{z} \ge z^{2-p}.$$

Step 2: Let R > 0, put $z_R(x, t) = z(x, t)\phi_R(x, t)$, where ϕ_R is a suitable cut-off function and then there exists (x_R, t_R) s.t $z_R(x_R, t_R) = \max_{\mathbb{R}^N \times \mathbb{R}} z_R(x, t)$. By using the maximum argument, we arrive at

$$z_R^{1-p}(x_R,t_R) \leq CR^{-2}.$$

くロ と く 同 と く ヨ と 一

Step 1: Assume p < 1 and suppose in contrary that (1) has a positive classical solution w in $\mathbb{R}^N \times \mathbb{R}$. Set $z := w^{-1}$, then (1) becomes

$$-z_t + \Delta z - 2\frac{|\nabla z|^2}{z} \ge z^{2-p}.$$

Step 2: Let R > 0, put $z_R(x, t) = z(x, t)\phi_R(x, t)$, where ϕ_R is a suitable cut-off function and then there exists (x_R, t_R) s.t $z_R(x_R, t_R) = \max_{\mathbb{R}^N \times \mathbb{R}} z_R(x, t)$. By using the maximum argument, we arrive at

$$z_R^{1-p}(x_R,t_R) \leq CR^{-2}.$$

Letting $R \to \infty$ we have $z_R(x_R, t_R) \to 0$ as $R \to \infty$. We obtain a contradiction since $z_R(x_R, t_R) \to \sup z > 0$.

Step 1: Assume p < 1 and suppose in contrary that (1) has a positive classical solution w in $\mathbb{R}^N \times \mathbb{R}$. Set $z := w^{-1}$, then (1) becomes

$$-z_t + \Delta z - 2\frac{|\nabla z|^2}{z} \ge z^{2-p}.$$

Step 2: Let R > 0, put $z_R(x, t) = z(x, t)\phi_R(x, t)$, where ϕ_R is a suitable cut-off function and then there exists (x_R, t_R) s.t $z_R(x_R, t_R) = \max_{\mathbb{R}^N \times \mathbb{R}} z_R(x, t)$. By using the maximum argument, we arrive at

$$z_R^{1-p}(x_R,t_R) \leq CR^{-2}.$$

Letting $R \to \infty$ we have $z_R(x_R, t_R) \to 0$ as $R \to \infty$. We obtain a contradiction since $z_R(x_R, t_R) \to \sup z > 0$.

Introduction Our results The approaches System

Proof of Theorem 2: Existence of nonnegative solutions

When pq < 1, a nontrivial nonnegative solution (u, v) in $\mathbb{R}^N \times \mathbb{R}$ of the following form

$$(u,v) = egin{cases} (At^lpha, Bt^eta) & ext{ if } t > 0, x \in \mathbb{R}^N, \ (0,0) & ext{ if } t \leq 0, x \in \mathbb{R}^N \end{cases}.$$

Our results

Proof of Theorem 2: Existence of nonnegative solutions

When pq < 1, a nontrivial nonnegative solution (u, v) in $\mathbb{R}^N \times \mathbb{R}$ of the following form

$$(u,v) = egin{cases} (At^lpha, Bt^eta) & ext{if } t > 0, x \in \mathbb{R}^N, \ (0,0) & ext{if } t \leq 0, x \in \mathbb{R}^N \end{cases}.$$

When pq = 1, a positive solution is of the form

$$(u, v) = \left(\frac{1}{p\beta}e^{p\beta t}, e^{\beta t}\right), \text{ where } \beta = p^{-\frac{q}{q+1}}.$$

• • = • • = •

Our results

Proof of Theorem 2: Existence of nonnegative solutions

When pq < 1, a nontrivial nonnegative solution (u, v) in $\mathbb{R}^N \times \mathbb{R}$ of the following form

$$(u,v) = egin{cases} (At^lpha, Bt^eta) & ext{if } t > 0, x \in \mathbb{R}^N, \ (0,0) & ext{if } t \leq 0, x \in \mathbb{R}^N \end{cases}$$

When pq = 1, a positive solution is of the form

$$(u, v) = \left(\frac{1}{p\beta}e^{p\beta t}, e^{\beta t}\right), \text{ where } \beta = p^{-\frac{q}{q+1}}.$$

When pq > 1 and $\max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}\right\} < N$, we have a nontrivial nonnegative solution is of the form

$$(u,v) = \begin{cases} \left(kt^{-\alpha}e^{-\gamma\frac{1+|x|^2}{t}}, \ lt^{-\beta}e^{-\theta\frac{1+|x|^2}{t}}\right) & \text{if } t > 0, x \in \mathbb{R}^N\\ (0,0) & \text{if } t \le 0, x \in \mathbb{R}^N \end{cases}.$$

Our results

Proof of Theorem 2: Existence of nonnegative solutions

When pq < 1, a nontrivial nonnegative solution (u, v) in $\mathbb{R}^N \times \mathbb{R}$ of the following form

$$(u,v) = egin{cases} (At^lpha, Bt^eta) & ext{if } t > 0, x \in \mathbb{R}^N, \ (0,0) & ext{if } t \leq 0, x \in \mathbb{R}^N \end{cases}$$

When pq = 1, a positive solution is of the form

$$(u, v) = \left(\frac{1}{p\beta}e^{p\beta t}, e^{\beta t}\right), \text{ where } \beta = p^{-\frac{q}{q+1}}.$$

When pq > 1 and $\max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}\right\} < N$, we have a nontrivial nonnegative solution is of the form

$$(u,v) = \begin{cases} \left(kt^{-\alpha}e^{-\gamma\frac{1+|x|^2}{t}}, \ lt^{-\beta}e^{-\theta\frac{1+|x|^2}{t}}\right) & \text{if } t > 0, x \in \mathbb{R}^N\\ (0,0) & \text{if } t \le 0, x \in \mathbb{R}^N \end{cases}.$$

Proof of Theorem 2: Nonexistence of nonnegative solutions

We prove the nonexistence result by contradiction.

²Pinsky, R. G. Existence and nonexistence of global solutions for $u_t = \Delta u + a(x)u^p$ in \mathbb{R}^d . J. Differential Equations 133, 1 (1997), 152–177. $\langle u \rangle \langle v \rangle \langle$

¹Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), 176–202.

Introduction Our results The approaches System involving the fractional Laplacian

Proof of Theorem 2: Nonexistence of nonnegative solutions

We prove the nonexistence result by contradiction. Step 1: By developing the technique in $[EH91]^1$ and $[Pin97]^2$, we show that

$$u(x,t) \geq Ct^{-rac{N}{2}}\log(1+t)e^{-rac{|x|^2}{2t}}, t\geq t_1, x\in \mathbb{R}^N.$$

¹Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), 176–202.

²Pinsky, R. G. Existence and nonexistence of global solutions for $u_t = \Delta u + a(x)u^p$ in \mathbb{R}^d . J. Differential Equations 133, 1 (1997), 152–177.

Introduction Our results The approaches System involving the fractional Laplacian

Proof of Theorem 2: Nonexistence of nonnegative solutions

We prove the nonexistence result by contradiction. Step 1: By developing the technique in $[EH91]^1$ and $[Pin97]^2$, we show that

$$u(x,t) \geq Ct^{-rac{N}{2}}\log(1+t)e^{-rac{|x|^2}{2t}}, t\geq t_1, x\in \mathbb{R}^N.$$

Step 2: By using a suitable change of variable and a test-function method, we prove that if $p \ge q$, $U_R := \{(x, t) : R < |x| < 2R, R^2 < t < 2R^2\}$,

$$\int_{U_R} u^{\frac{1}{p}} dx dt \leq C R^{N+2-\frac{2(p+1)}{p(pq-1)}}$$

¹Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), 176–202.

²Pinsky, R. G. Existence and nonexistence of global solutions for $u_t = \Delta u + a(x)u^p$ in \mathbb{R}^d . J. Differential Equations 133, 1 (1997), 152–177. Introduction Our results The approaches System involving the fractional Laplacian

Proof of Theorem 2: Nonexistence of nonnegative solutions

We prove the nonexistence result by contradiction. Step 1: By developing the technique in $[EH91]^1$ and $[Pin97]^2$, we show that

$$u(x,t) \geq Ct^{-rac{N}{2}}\log(1+t)e^{-rac{|x|^2}{2t}}, t\geq t_1, x\in \mathbb{R}^N.$$

Step 2: By using a suitable change of variable and a test-function method, we prove that if $p \ge q$, $U_R := \{(x, t) : R < |x| < 2R, R^2 < t < 2R^2\}$,

$$\int_{U_R} u^{\frac{1}{p}} dx dt \leq C R^{N+2-\frac{2(p+1)}{p(pq-1)}}$$

¹Escobedo, M., and Herrero, M. A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differential Equations 89, 1 (1991), 176–202.

²Pinsky, R. G. Existence and nonexistence of global solutions for $u_t = \Delta u + a(x)u^p$ in \mathbb{R}^d . J. Differential Equations 133, 1 (1997), 152–177. Our results

The approaches

System involving the fractional Laplacian 00000

Proof of Theorem 2: Nonexistence

Taking into account Step 1 and Step 2, we arrive at

$$R^{rac{2(p+1)}{p(pq-1)}-rac{N}{p}}\log^{rac{1}{p}}(1+R^2)\leq C$$
 .

Himeji conference on PDEs 2023

(日)

Proof of Theorem 2: Nonexistence

Taking into account Step 1 and Step 2, we arrive at

$$R^{rac{2(p+1)}{p(pq-1)}-rac{N}{p}}\log^{rac{1}{p}}(1+R^2)\leq C.$$

When $p \ge q$, $\frac{2(p+1)}{pq-1} = \max\left\{\frac{2(q+1)}{pq-1}, \frac{2(p+1)}{pq-1}\right\} \ge N$. Letting $R \to \infty$, we obtain a contradiction.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Proof of Theorem 2: Nonexistence

Taking into account Step 1 and Step 2, we arrive at

$$R^{rac{2(p+1)}{p(pq-1)}-rac{N}{p}}\log^{rac{1}{p}}(1+R^2)\leq C.$$

When $p \ge q$, $\frac{2(p+1)}{pq-1} = \max\left\{\frac{2(q+1)}{pq-1}, \frac{2(p+1)}{pq-1}\right\} \ge N$. Letting $R \to \infty$, we obtain a contradiction.

- 4 同 ト 4 ヨ ト 4 ヨ ト

On the whole space $\mathbb{R}^N \times \mathbb{R}$, we show that the system (2) has no positive solution when $p \leq 0$ or $q \leq 0$ or pq < 1.

★ ∃ ► < ∃ ►</p>

On the whole space $\mathbb{R}^N \times \mathbb{R}$, we show that the system (2) has no positive solution when $p \leq 0$ or $q \leq 0$ or pq < 1.

• p = 0 or q = 0, one equation in the system is of the form $u_t - \Delta u \ge 1$ which has no positive solution thanks to Theorem 1.

(E)

On the whole space $\mathbb{R}^N \times \mathbb{R}$, we show that the system (2) has no positive solution when $p \leq 0$ or $q \leq 0$ or pq < 1.

- p = 0 or q = 0, one equation in the system is of the form $u_t \Delta u \ge 1$ which has no positive solution thanks to Theorem 1.
- $p \neq 0$ and $q \neq 0$, suppose $p \geq q$. We shall use reduction argument to transform the system into an inequality which has no positive solution.

< ロ > < 同 > < 三 > < 三 >

Proof of Theorem 3: Nonexistence result

On the whole space $\mathbb{R}^N \times \mathbb{R}$, we show that the system (2) has no positive solution when $p \leq 0$ or $q \leq 0$ or pq < 1.

• p = 0 or q = 0, one equation in the system is of the form $u_t - \Delta u \ge 1$ which has no positive solution thanks to Theorem 1.

• $p \neq 0$ and $q \neq 0$, suppose $p \geq q$. We shall use reduction argument to transform the system into an inequality which has no positive solution. More precisely, when p, q < 0 or p > 0 and pq < 1, we put w = u + v or $w = u^a v^b$ with a, b > 0, a + b = 1 to obtain an inequality

$$w_t - \Delta w \ge C w^s$$
, for some $s < 1$.

On the whole space $\mathbb{R}^N \times \mathbb{R}$, we show that the system (2) has no positive solution when $p \leq 0$ or $q \leq 0$ or pq < 1.

• p = 0 or q = 0, one equation in the system is of the form $u_t - \Delta u \ge 1$ which has no positive solution thanks to Theorem 1.

• $p \neq 0$ and $q \neq 0$, suppose $p \geq q$. We shall use reduction argument to transform the system into an inequality which has no positive solution. More precisely, when p, q < 0 or p > 0 and pq < 1, we put w = u + v or $w = u^a v^b$ with a, b > 0, a + b = 1 to obtain an inequality

$$w_t - \Delta w \ge C w^s$$
, for some $s < 1$.

This has no positive solution by Theorem 1.

On the whole space $\mathbb{R}^N \times \mathbb{R}$, we show that the system (2) has no positive solution when $p \leq 0$ or $q \leq 0$ or pq < 1.

• p = 0 or q = 0, one equation in the system is of the form $u_t - \Delta u \ge 1$ which has no positive solution thanks to Theorem 1.

• $p \neq 0$ and $q \neq 0$, suppose $p \geq q$. We shall use reduction argument to transform the system into an inequality which has no positive solution. More precisely, when p, q < 0 or p > 0 and pq < 1, we put w = u + v or $w = u^a v^b$ with a, b > 0, a + b = 1 to obtain an inequality

$$w_t - \Delta w \ge C w^s$$
, for some $s < 1$.

This has no positive solution by Theorem 1.

On the whole space $\mathbb{R}^N \times \mathbb{R}$, we show that the system (2) has a positive solution when p, q > 0, pq > 1 and $\max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}\right\} < N$. The proof is based on the technique of Taliaferro¹.

¹Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289–3302.

On the whole space $\mathbb{R}^N \times \mathbb{R}$, we show that the system (2) has a positive solution when p, q > 0, pq > 1 and $\max\left\{\frac{2(p+1)}{pq-1}, \frac{2(q+1)}{pq-1}\right\} < N$. The proof is based on the technique of Taliaferro¹.

¹Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289–3302.

Let
$$\alpha = \frac{2(p+1)}{pq-1}, \ \beta = \frac{2(q+1)}{pq-1}, \ U(x,t) = (1+|x|^4+t^2)^{-\alpha/4}, \ V(x,t) = (1+|x|^4+t^2)^{-\beta/4}$$

¹Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289–3302.

The approaches

System involving the fractional Laplacian 00000

Proof of Theorem $\overline{3:}$ Existence result

Let
$$\alpha = \frac{2(p+1)}{pq-1}$$
, $\beta = \frac{2(q+1)}{pq-1}$,
 $U(x,t) = (1+|x|^4+t^2)^{-\alpha/4}$, $V(x,t) = (1+|x|^4+t^2)^{-\beta/4}$ and

$$u(x,t) = \iint_{\mathbb{R}^N \times \mathbb{R}} G(x-y,t-s) V^p(y,s) dy ds,$$

$$v(x,t) = \iint_{\mathbb{R}^N \times \mathbb{R}} G(x-y,t-s) U^q(y,s) dy ds.$$

¹Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289–3302.

Proof of Theorem 3: Existence result

Let
$$\alpha = \frac{2(p+1)}{pq-1}, \ \beta = \frac{2(q+1)}{pq-1}, \ U(x,t) = (1+|x|^4+t^2)^{-\alpha/4}, \ V(x,t) = (1+|x|^4+t^2)^{-\beta/4}$$
 and

$$u(x,t) = \iint_{\mathbb{R}^N \times \mathbb{R}} G(x-y,t-s) V^p(y,s) dy ds,$$

$$v(x,t) = \iint_{\mathbb{R}^N \times \mathbb{R}} G(x-y,t-s) U^q(y,s) dy ds.$$

On one hand, it follows from Lemma 1 of [Tal09]¹ that

$$u_t - \Delta u = V^p, \quad v_t - \Delta v = U^q.$$

¹Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289–3302.

Proof of Theorem 3: Existence result

Let
$$\alpha = \frac{2(p+1)}{pq-1}, \ \beta = \frac{2(q+1)}{pq-1}, \ U(x,t) = (1+|x|^4+t^2)^{-\alpha/4}, \ V(x,t) = (1+|x|^4+t^2)^{-\beta/4}$$
 and

$$u(x,t) = \iint_{\mathbb{R}^N \times \mathbb{R}} G(x-y,t-s) V^p(y,s) dy ds,$$

$$v(x,t) = \iint_{\mathbb{R}^N \times \mathbb{R}} G(x-y,t-s) U^q(y,s) dy ds.$$

On one hand, it follows from Lemma 1 of [Tal09]¹ that

$$u_t - \Delta u = V^p, \quad v_t - \Delta v = U^q.$$

On the other hand, using the argument in [Tal09], we have $V \ge cv, U \ge cu$.

¹Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289–3302. ← □ → ← \bigcirc → ←

Proof of Theorem 3: Existence result

Let
$$\alpha = \frac{2(p+1)}{pq-1}, \ \beta = \frac{2(q+1)}{pq-1}, \ U(x,t) = (1+|x|^4+t^2)^{-\alpha/4}, \ V(x,t) = (1+|x|^4+t^2)^{-\beta/4}$$
 and

$$u(x,t) = \iint_{\mathbb{R}^N \times \mathbb{R}} G(x-y,t-s) V^p(y,s) dy ds,$$

$$v(x,t) = \iint_{\mathbb{R}^N \times \mathbb{R}} G(x-y,t-s) U^q(y,s) dy ds.$$

On one hand, it follows from Lemma 1 of [Tal09]¹ that

$$u_t - \Delta u = V^p, \quad v_t - \Delta v = U^q.$$

On the other hand, using the argument in [Tal09], we have $V \ge cv, U \ge cu$.

¹Taliaferro, S. D. Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361, 6 (2009), 3289–3302. ← □ → ← \bigcirc → ←

Our results

The approaches

System involving the fractional Laplacian 00000

Proof of Theorem 3: Existence result

Then,

$$u_t - \Delta u \ge cv^p, \quad v_t - \Delta v \ge cu^q.$$

æ

Our results

The approaches

System involving the fractional Laplacian 00000

Proof of Theorem 3: Existence result

Then,

$$u_t - \Delta u \ge cv^p, \quad v_t - \Delta v \ge cu^q.$$

By making the dilation

$$u(x,t) = u_{\varepsilon}(\varepsilon x, \varepsilon^2 t), \ v(x,t) = v_{\varepsilon}(\varepsilon x, \varepsilon^2 t),$$

æ

イロト イ団ト イヨト イヨト

Our results

The approaches

System involving the fractional Laplacian 00000

(日)

Proof of Theorem 3: Existence result

Then,

$$u_t - \Delta u \ge cv^p, \quad v_t - \Delta v \ge cu^q.$$

By making the dilation

$$u(x,t) = u_{\varepsilon}(\varepsilon x, \varepsilon^2 t), \ v(x,t) = v_{\varepsilon}(\varepsilon x, \varepsilon^2 t),$$

we arrive at

$$\partial_t u_{\varepsilon} - \Delta u_{\varepsilon} \geq \varepsilon^{-2} c^{\rho} v_{\varepsilon}^{\rho}, \quad \partial_t v_{\varepsilon} - \Delta v_{\varepsilon} \geq \varepsilon^{-2} c^{q} u_{\varepsilon}^{q} \quad \text{in } \mathbb{R}^N \times \mathbb{R}.$$

Our results

The approaches

System involving the fractional Laplacian 00000

Proof of Theorem 3: Existence result

Then,

$$u_t - \Delta u \ge cv^p, \quad v_t - \Delta v \ge cu^q.$$

By making the dilation

$$u(x,t) = u_{\varepsilon}(\varepsilon x, \varepsilon^2 t), \ v(x,t) = v_{\varepsilon}(\varepsilon x, \varepsilon^2 t),$$

we arrive at

$$\partial_t u_{\varepsilon} - \Delta u_{\varepsilon} \ge \varepsilon^{-2} c^p v_{\varepsilon}^p, \quad \partial_t v_{\varepsilon} - \Delta v_{\varepsilon} \ge \varepsilon^{-2} c^q u_{\varepsilon}^q \quad \text{in } \mathbb{R}^N imes \mathbb{R}.$$

Choosing ε small, then $(u_{\varepsilon}, v_{\varepsilon})$ is a positive solution of the system.

< ロ > < 同 > < 三 > < 三 >

Our results

The approaches

System involving the fractional Laplacian 00000

Proof of Theorem 3: Existence result

Then,

$$u_t - \Delta u \ge cv^p, \quad v_t - \Delta v \ge cu^q.$$

By making the dilation

$$u(x,t) = u_{\varepsilon}(\varepsilon x, \varepsilon^2 t), \ v(x,t) = v_{\varepsilon}(\varepsilon x, \varepsilon^2 t),$$

we arrive at

$$\partial_t u_{\varepsilon} - \Delta u_{\varepsilon} \ge \varepsilon^{-2} c^p v_{\varepsilon}^p, \quad \partial_t v_{\varepsilon} - \Delta v_{\varepsilon} \ge \varepsilon^{-2} c^q u_{\varepsilon}^q \quad \text{in } \mathbb{R}^N imes \mathbb{R}.$$

Choosing ε small, then $(u_{\varepsilon}, v_{\varepsilon})$ is a positive solution of the system.

< ロ > < 同 > < 三 > < 三 >

3 The approaches

4 System involving the fractional Laplacian

- ◆ □ ▶ → 御 ▶ → 注 ▶ → 注 → のへで

We address a similar question on the optimal Liouville-type theorems for the positive or nonnegative solutions of the fractional parabolic equation

$$u_t + (-\Delta)^s u \ge u^p$$
 in $\mathbb{R}^N \times I$

and fractional parabolic system

$$\begin{cases} u_t + (-\Delta)^s u \ge v^p \text{ in } \mathbb{R}^N \times I \\ v_t + (-\Delta)^s v \ge u^q \text{ in } \mathbb{R}^N \times I \end{cases},$$

where the exponents p and q are real numbers and $(-\Delta)^s$ is the fractional Laplacian with 0 < s < 1,

()

We address a similar question on the optimal Liouville-type theorems for the positive or nonnegative solutions of the fractional parabolic equation

$$u_t + (-\Delta)^s u \ge u^p$$
 in $\mathbb{R}^N \times I$

and fractional parabolic system

$$\begin{cases} u_t + (-\Delta)^s u \ge v^p \text{ in } \mathbb{R}^N \times I \\ v_t + (-\Delta)^s v \ge u^q \text{ in } \mathbb{R}^N \times I \end{cases},$$

where the exponents p and q are real numbers and $(-\Delta)^s$ is the fractional Laplacian with 0 < s < 1, defined by

$$(-\Delta)^{s}u(x)=c_{N,s}P.V.\int_{\mathbb{R}^{N}}\frac{u(x)-u(\xi)}{|x-\xi|^{N+2s}}d\xi.$$

Here $c_{N,s}$ is the normalization constant and P.V. stands for the Cauchy principle value. This operator is also defined by using the Fourier transform

$$\mathcal{F}\left((-\Delta)^{s}u\right)(\xi) = |\xi|^{2s}\mathcal{F}u(\xi),$$

where $\mathcal{F}u$ is the Fourier transform of u.

We address a similar question on the optimal Liouville-type theorems for the positive or nonnegative solutions of the fractional parabolic equation

$$u_t + (-\Delta)^s u \ge u^p$$
 in $\mathbb{R}^N \times I$

and fractional parabolic system

$$\begin{cases} u_t + (-\Delta)^s u \ge v^p \text{ in } \mathbb{R}^N \times I \\ v_t + (-\Delta)^s v \ge u^q \text{ in } \mathbb{R}^N \times I \end{cases},$$

where the exponents p and q are real numbers and $(-\Delta)^s$ is the fractional Laplacian with 0 < s < 1, defined by

$$(-\Delta)^{s}u(x)=c_{N,s}P.V.\int_{\mathbb{R}^{N}}\frac{u(x)-u(\xi)}{|x-\xi|^{N+2s}}d\xi.$$

Here $c_{N,s}$ is the normalization constant and P.V. stands for the Cauchy principle value. This operator is also defined by using the Fourier transform

$$\mathcal{F}\left((-\Delta)^{s}u\right)(\xi) = |\xi|^{2s}\mathcal{F}u(\xi),$$

where $\mathcal{F}u$ is the Fourier transform of u.

Introduction	Our results	The approaches	System involving the fractional Laplacian
0000000	0000		00●00
Results			

Introduction	Our results	The approaches	System involving the fractional Laplacian
0000000	0000		○○●○○
Results			

Theorem 4

Assume that p > 0. Then the equation has no nontrivial nonnegative solution in $\mathbb{R}^N \times \mathbb{R}$ if and only if

$$1$$

¹Duong, Anh Tuan and Nguyen, Van Hoang, Liouville Type Theorems for Fractional Parabolic Problems, Journal of Dynamics and Differential Equations, (2021),=1-14=

Introduction	Our results	The approaches	System involving the fractional Laplacian
0000000	0000		○○●○○
Results			

Theorem 4

Assume that p > 0. Then the equation has no nontrivial nonnegative solution in $\mathbb{R}^N \times \mathbb{R}$ if and only if

$$1$$

Theorem 5

The equation has no positive solution in $\mathbb{R}^N \times \mathbb{R}$ if and only if

$$p < 1$$
 or $1 .$

¹Duong, Anh Tuan and Nguyen, Van Hoang, Liouville Type Theorems for Fractional Parabolic Problems, Journal of Dynamics and Differential Equations, (2021),≣1-14≣ ∽ <

Introduction	Our results	The approaches	System involving the fractional Laplacian
0000000	0000		○○●○○
Results			

Theorem 4

Assume that p > 0. Then the equation has no nontrivial nonnegative solution in $\mathbb{R}^N \times \mathbb{R}$ if and only if

$$1$$

Theorem 5

The equation has no positive solution in $\mathbb{R}^N \times \mathbb{R}$ if and only if

$$p < 1$$
 or $1 .$

¹Duong, Anh Tuan and Nguyen, Van Hoang, Liouville Type Theorems for Fractional Parabolic Problems, Journal of Dynamics and Differential Equations, (2021),≣1-14≣ ∽ <

Introduction	Our results	The approaches	System involving the fractional Laplacian
0000000	0000		○○○●○

Theorem 6

The system has no positive solution in $\mathbb{R}^N \times \mathbb{R}$ if (p,q) is in one of the following ranges

- $p \le 0$ or $q \le 0$.
- *p*, *q* > 0 and *pq* < 1.

•
$$p, q > 0, \ pq > 1 \ and \max\left\{\frac{2s(p+1)}{pq-1}, \frac{2s(q+1)}{pq-1}\right\} > N.$$

In addition, the system has positive solutions in $\mathbb{R}^N\times\mathbb{R}$ if

$$p,q>0,\ pq>1$$
 and $\max\left\{rac{2s(p+1)}{pq-1},rac{2s(q+1)}{pq-1}
ight\}< N.$

Notice that the critical case is left open. [KO17]¹

¹Kakehi, Tomoyuki; Oshita, Yoshihito; Blowup and global existence of a solution to a semilinear reaction-diffusion system with the fractional Laplacian. Math. J. Okayama Univ. 59 (2017), [2016 on cover], 175–218.

Introduction	Our results	The approaches	System involving the fractional Laplacian
0000000	0000	000000000	0000●

THANK YOU VERY MUCH FOR YOUR ATTENTION

æ

▶ ▲ 문 ▶ ▲ 문 ▶