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Schrodinger operators with complex potentials
Let d € N and consider

Q Q Q

AV
WN

~A+V in[*(R?Y with Ve L9(RY:C) and {

realized as m-sectorial operator (Friedrichs).

We study o(—A + V) N (C\ [0, 00)), which (since
|V|2(=A + 1)z € §) consists of discrete eigenvalues of finite
algebraic multiplicities which can only accumulate at [0, co).




Estimates for individual el%envalues
For real-valued V the Keller-Lieb—Thirring ('61, '76) inequality

d=1, q>1,
> A]9=9/2 Sdtq/ V|9 for Jd=2, g>1,
AEa(—A+V)\[0,00) R d>3, g>d/2
sheds light on the lowest eigenvalue and the accumulation of negative
eigenvalues at 0.

Corresponding inequality for complex V/?
Let z € o4(—A + V). In d =1, Abramov—-Aslanyan—Davies ('01) showed

12|} s/|V|.
R

For d > 2 and ¢ > max{1+, %} Frank—Laptev—Lieb—Seiringer ('06) got

_d Re(z)+ \?
=% <0 (1 - v
07 5o (14 1005) LIV




Conjecture (Laptev—=Safronov ('09))
Any eigenvalue z € C\[0,00) of —A + V satisfies

A Sag [ VI dz2 qe(@2d. (T)
Rd

Status:
> Bogli ('17) constructed a radial V € L9 with ¢ > d and ||V|; < ¢
such that (1 +ie) € o(—A + V) \ [0, 0).
= (LT) false for q > d.

» Frank ('11) proved (LT) for all g < (d + 1)/2 via
Kenig—Ruiz—Sogge ('83).

» Bogli—Cuenin ('21): (LT) false for g > (d + 1)/2. (Inspired by
Fourier restriction.)

How “special” is the BC example?



Random potentials

Consider eigenvalues of realizations of —A + V,, in L2(R9) with

Vo) = 3wV (th) ,

jehzd

where
> w(j) are iid. symmetric Bernoulli or Gaussian random variables,

» h > 0 is a randomization scale.



Main result

Theorem 1 (Cuenin—-M., arXiv:2201.04466)
For any q < d + 1, there exist constants My, c > 0 s.t. the following
holds.

(R9), and for any M > My,
each eigenvalue z = (\ + ic)? of —A + V,, satisfies

d

P

_—— M||V||1q
<)\h>d/2(|n<)\h>)2 qu || ”L (RY)

except for w in a set of measure < exp(—cM?).

Remark: The BC example V; obeys |V,| < ely, with

T.={(x,x): x|l <e b, X <e 2}, [ Velg S e~ %, and generates
an eigenvalue 1+ je of —A + V.

= BC example is almost surely destroyed after randomizing on the scale
h<el% 13
o d
_\2—d/q _ PN . d/2 2 < d/2 2 : de i
Because 1 = X RUCEIRE (A2 (In(Ah))* < ||V [g(Ah)?/“(In(Xh))= and the right side is
(ﬁ_l).
>1forh<e 29

QN



Spectral radius

Recall

zea(-A+ V) =1 <spr(R(z)?V,|R(2)|'/?) = (R(2)? V,,|R(2)[2)"||/"

= lim ||
n—oo
with R(z) = (—A — z)~1. Wlog, z = (1 + ig)?.

For simplicity, assume V € (x) ‘L9 with g < d + 1. Decompose

Vi, (x) = Vo(x) + Z Vi(x), where
>1

Vo(x) = V() Igx<1y,  Ve(x) = Vo (x) Lje-1<)x<oey -

Consider

S R(@)VLR(2):VLR(2)E - Vi, R(2)2V,, |R(2)]: .
O1,...,0,=0



Elementary operators

Position cut off = frequency smoothing on inverse scale

1
-1
<2y R <oty = Loy F (|§|z —=* 7@) Flin<ating

where 6;1 > 2% + 2%+ and 74,(€) = 6defy(§/6j) is Schwartz with
vV e Cx.



Frequencies ||£]? — 1| > 1 are harmless (Sobolev).

By the coarea formula for |¢|2 ~ 1 and Cauchy-Schwarz, it suffices to
estimate

Nl
[T

1 1 *
In? = - In sup |[|Fw, Vi, Fiy, 2wy ). (v

51' 5j+1 t,t'e(1/2,2)

where M, := {¢ € R? : |¢| = t} with associated Fourier restriction and
extension operators

(Fro)©) = [ dee ™™ 0]y (Fird)0 = | don©) <o),



Local extension bound
Stein—Tomas: |[Fy, VFf || < HV||% The exponent <+ is optimal.
Randomness allows to halve the decay!
Theorem 2
Letq<d+1, R>h, and V(x) = ¥jepmew () V(X)L 1)e (X—;f) with
supp V,, € B(R). Then

d
2

El|Fi VioFig, | S (W2 (In(R)? (In(h) +In(R)* [ Vg, £ € (1/2,2).

By the tail bound P(||X| > t) < exp(—ﬁ), this shows that

l In% L
o = iy
< (U1 4+ ) - (h)? «41/2 (In(hy + ;)% - 2751 ()" Vg

1
In2 “|[Fme Ve, P, |l

holds for all {¢;}; and w outside a set of measure

< Z exp (—c ):e_cz.

b1,
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Rough ideas to get the doubling of the exponent (d +1)/2— d+1

» Exploit square root cancellation via Dudley's inequality
(cf. Khintchine)

> w(n)a(n)

> Problem: we are dealing with sup, ¢,z [(g, Fm Vi Fir8") 12(8(ry)|

E sup
(a(n))nCA

(an)nC

1/2
S Vin(A]) sue <Z| n)z) .

» However: we are frequency localized on unit scale = discretize
X-space on unit scale

» Moreover: we are position localized on scale R = discretize {-space
on scale R71

» The discretization allows us to reduce the analysis to

* * /
E sup |(Fr1,a8s Vo Fan,a8") e2(B(R)NZ) |
HgHﬂ(/\;)»Hg/Hz2(/\;)SR7(d71)/2

where Fy ;2 (2(Ng) = £2(B(R) N Z4) is a discretized Fourier
extension operator on a R~ !-net A C M in ¢-space and
vo(n) = w(n)v(n) with v € ¢9(B(R) N Z9).
Now: replace sup over infinite set by a sup over a finite set by
paying an entropy cost.
Nr. 11



> To treat the supremum over ¢*(A%), we use Bourgain's ('02) idea:
covering & chaining/telescoping;:
Fk Cran(Fpy 4) € 0°(B(R)NZ7) s.t. for all g € £2(Ag) with

d—1
lgllezazy < R™ =,

Fm.a& = Zf(k) for some E(k) € Fi
k>0

with [ <27KR~"2 and [|€W], < R™F with
p'>2(d+1)/(d - 1).

» |t suffices to estimate

S E sup (60, ve®)) sz
k,k'ZO ]:kX]:k/

» Thanks to the dual Sudakov entropy bound

In | Fil S 451 Far.alZ2(nz) e (B(R)nzey IN(|B(R) N 29)

R

(Pajor—Tomczak-Jaegermann ('86)), Dudley’s inequality yields

E sup [(¢™), wa(k/)>22(B(R)ﬁZd)| SVINR)vilg, g<d+1.
]:kX]:k’
Nr. 12



» Interpolating the random bound with the deterministic bound
(Holder)

sup (€9, o) p(a(rynze S ROV vllg, g1
]:kX]:k’

allows to conclude the proof of Theorem 2.

Nr. 13



Local to global arguments — Pf. of Thm. 1 (h = 1)
To remove the (x)~* decay assumption, use sparse decomposition of V.
» Horizontal dyadic decomposition of V:

=y v,
i>0
where \/, = V]IH;+1<\V\<H,- (Wlth
Hi=inf{t>0: [{|V| >t} <271)).
Note [supp(Vi)| = 2" and || V|| o ~ [|H;27/9]| 7).

» Sparse CZ decomposition of each V; (Tao ('99)!): Let
K= O(K2/5), N, =0(2), R =002")
with K > 1 and y > 0 arbitrary but fixed.

Then supp(V;) is covered by K; many sparse collections of balls,
each containing at most N; many balls. Sparse means that the
centers of the balls {B(xk, R;)}}_, in the same collection are
(RiN;)"-separated. In particular,

Ki N
V=2 2.2 Vi

i>0 j=1 k=1

1See also Pinney ('21) for a pedagogical introduction. Nr. 14



Probabilistic bound: in the multilinear expansion of the spectral radius,
we obtain (similarly as before)

HC<51)]132 V., C(éz)H
< Mlog(1/61+1/5,)] 7Y - [log(1/61 + 1/62)] "M | V1, | 1
for all w outside a set of measure at most

> NiKi Ny K Ny Kiy exp(—c' M [log(1/61 + 1/8,)]7M) S em M’

11,12,13
Here Bx = B(xk, Rk) are arbitrary balls and C(®)(D) obeys
(COO £ (e ~ 1] +6) 2
with
81 = (d(B1, B2) + 2Ry + 2Rp) ", &2 = (d(Ba, B3) + 2Ry + 2Rs) .
Writing .y = (i, je, k) for £ € No, we get

IR0V, RoVa, - - - RoVa,

S AM" [ Tllog(1/6a,) + log(1/6a,, 1| Ve, |14
(=1

for all g < d + 1 except for w in a set of measure at most exp(—cM?).
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Deterministic bound: exploit

(=0 = ) (x,y)] S e x—y| T
and use complex interpolation to obtain, with g, = ‘”1 —npandn = q”,
1 1 —n’
IV RolVi2 | S (Sap + d(Bas Bs)) ™" || Vallg I Vislls)?

Borrow an ¢ of this and interpolate (6 € (0,1)) with random bound
= with high probability:

Z > IR0V, RoVia, - - RoVa, |

..... jn kiy...,kn

5 Mm" H[lOg(l + Rl'z71 + Rl'z + Ri£+1)]O(1) X K/'f X Hl}‘zié((l_g)/q H6/an) :

(=1

We used (80,00, + d(Ba,, BQM))*QTW/ to control

[log(d(Ba,: Ba,.,))] 7" in log(1/da,).

Moreover, we used 37, y, (d(B(xk Ry), B.,))~%"'/2 <., 1 uniformly in
i1y j1, 2y j2, k2, provided 0n'~/2 > 1 (so take v > 1 depending on the final
values of 1,0) thanks to d(B(xk, R), Ba,) > 3(N; R;,)Y for all but at

most one kj.

(If this did not hold for two distinct ki, kl/, then by the triangle inequality,

d(B(xky > Riy )s B(xs, Riy)) < (Niy Ryy )7, which contradicts the sparsity of the collection {B(xk;» Riy)})
1

Nr. 16



Recallg<d+1, q, = % —n, and O’'v/2 > 1. Once K s fixed,
choose 77,0 such that 0 < §(1/q, —1/q) < 1/K. Since
Ki[log(1 + R;,)]°™M) < 227/K we obtain

spr(BS(2)) S H2/92%/K | g<d+1.
€7y

Use this for § > g instead of g, i.e., we now regard (d+1)/2 < g< d+1
as given and choose § < d + 1 and K such that 1/§+3/K < 1/q. Then

spr(BS(2)) Zq sup M2/ 3" 20/31/443/K) < |y
= icz.

Remark: In a similar vein, we obtain
[Fa, Vis Fiy, || < M(BY?(log(h))?|[ Ve, g<d+1

except for w in a set of measure at most exp(—cM?).
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Outlook

» What happens when randomness is lacunary?

» |s the Laptev—Safronov conjecture true generically (in a
non-random sense)?

Aim: find suitable generic condition for the potential that prevents
Knapp examples at many scales.

» Optimality of V € L9172 in view of better restriction estimates (as

in d = 2) and considering instead R(z)}2VR(z)V|R(z)|*/? as basic
block?

» Upgrade operator norm estimates for Fp V,, Fj; to Schatten class
estimates (with high probability)? (cf. Safronov ('21))

Nr. 18



THANK YOU FOR LISTENING!
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Proof of Theorem 2
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Ingredients in proof of Theorem 2
» Our potential is chopped up into compactly supported pieces.
Let R be the length scale of one such (dyadic) chunk.

» = blurring in &-space on the inverse scale R~! and “locally
constant” properties
= discretization of &-space on the scale R™1, discrete restriction
theory available

» We are also localized in &-space on the unit scale =1
= locally constant property and discretization in x-space on inverse

scale p=1 = 1.

> Esupg grci2(my (8 Fm Vi Fryg’)l: supremum is over

infinite-dimensional set. ] .
Discretization of x-space allows to reduce this to computing
supremum over a finite set,

B sup |Z ()a00) £ VinAD_sun Z|ao )2,

(j));eA

by Dudley’s inequality. An entropy bound (dual Sudakov) allows to
control In(]A|).

Nr. 21



Proof of Theorem 2

In the proof of Theorem 2 we substitute g — 2q for convenience. That
is, throughout the proof, we assume g < (d + 1)/2.
We compute

Esup (g, Fm, ViuFiy, &)l = Esup
8.8’ §:8'
for g € L2(M,) and g’ € L?(My).
> Let A} :={n,}, C M; be a 1/R-net in &-space. Write £ =1, + T
with 7 € M, N Bo().
> Let A, = {x;}; ;== u 'Z? be a 1/pu-net in x-space. Write
x=x;+ywithy € Q.

| e GOV Fis, )

By partition of unity we can assume that g is supported on a disjoint
union of balls B(7,, ). Then

(F.8)(x) = / do(7))  exp(2mi(xi +y) - (n, + 7))g(n, + 1)

M:NBo(%)

v

Similarly, by a partition of unity we have for any G € L}(R9 : C),

/]Rd G(X)dX_Z/Ql/“ G(xi+y).

Nr. 22



Let ||f||egc(/\;;) = R%Hpr(/\*R) and introduce the discrete extension
operator

St 2.(NR) — £°(A\, N BR)
{gn, + )b = { D e((xi+y) o +7)glm +7)}i-

n,ENG
By discrete restriction theory (with t € (1/2,2) and 1/q=1/p—1/p)

- 4 S
ISell 2 (Az)— 2" (A, nBR) S 1 d//2 5

— d
Sellez (nz)— o0 (A Be) S ETHHID 2P 1

The discretization in x-space and the

(2 (Ng) — (A, N Bg)-boundedness of S allow us to reduce the
computation of the supremum over an infinite-dimensional set to the
computation of the supremum over a finite set, whose cardinality we can
control.

Nr. 23



. k) (K"
SEiwze Jodv [ dr [ dTEmaxzxr, Ejehzdw(l)zf]lx,-esj(%w)v(x’*y)gf e

There are sets Fj C £°°(A,, N Br) such that we can represent

Ze((x, +y)(n +7)g(n +7) Zﬁ k) ffk) € Fi CL(N.N Bg)

v k>0

(the €™ also depend on y, ) with In |7, | < In(R)4¥ 91 ~ In(uR)4¥
and

k ’
19 ey S LDV g, + )l

165N o (rny S 27K eI g, 4 7) g ~ 27 (s + ) e

v,sc v,sc

~ 19| g(ny + 7)) 2

v,sc

Thus,

Esupg g1 |(g:Fu Ve Fiy , 87)]

Qu/w  MiNBy(k) My nBo(h)

Nr. 24



Lemmas
Let g <(d+1)/2 and
. K) (K
Xeg = ‘Zjethw(J)Zi ]lx,-ij(%Jrh)V(Xi ‘H’)f,( )ff )‘-

Lemma 3

/ / / dr'E max |Xee| < /IN(HR) - h% || V|2
BD(IO M.NBo( 10 t/ﬂBo(lo) Fi X Fyr

W R

/ dy/ / dr' max [Xee| S RH 2|V
Bo(10) M,NBy(L2) M, NBo(X) FixXFyr

? R

Lemma 4
Let A > 0. Then

Z min{2~ k—k' A}<{ (1+ (In2(A))?), ﬁ

k,k'>0

IVIA
—

Nr. 25



The lemmas imply

E sup l{g, Fum, VwF,T/,t,g’>|
geL?(M;),g'€L?(M,)

S VIR % S min{27% ¥ \/in(uR) - R4}

k,k’>0

S IV l2q(h) v/in(uR) (1 + 10 (\/In(uR) - ¥ =% ))

for all t,¢' € (1/2,2) and ¢ > 1. This concludes the proof of Theorem 2.

Nr. 26



Proof of Lemma 3 - Probabilistic estimate |

Recall X¢ ¢ = ‘Zjehzdw( N>, ]lxleB(lo+h) V(x; +y)€ f(k

By dual-to-Sudakov (later), In(N) := In | Fy x Fir| < In(uR) (4 + 4K').
By Dudley,

k) (K’
B max [Xeel SVIRN | 3 [l |12|Zv<xf+y)sf L3 TP

Jjehzd

< Vin N HHV(X,—F_)/) X,EB(1°+h)H€qHz2‘7 H”fl xi€B;( 10+h ||eP ’ H l]lx,EB(m+h ”ZP

with

HHg]lx,-EB- erh)”gP’ ’ Hg/]lx,-eB-(m+h ||gP’

s )

< m'n{HH& x,€B(10+h)||gP HHf:]lx,eB(erh HZP

-min{27%,2~ k}llg(n»+7)

d
I

S we (ph)e

\\n.

2 (A& (Tlu'+7)||52 L(AR)

v,sc
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Proof of Lemma 3 - Probabilistic estimate [l

where we used [{i : x; +y € j+ Qn}| < (uh)? in the estimate of the
°-norm and |{j € hZ9 : x; +y € j + Qn}| = 1 to simplify the
Jj-summation in the £2 norm.

By Holder and |{i: x; +y € j + Qn}| < (uh)? (recall {x;}; = A, is the
%—net in Br),

d
Lo NVt nlallen < [ aylIVes +)lastum
Bo(32) g ! Bo(%2) '

O

d d_
< hf s V]|zg

Thus,

/ dy/ dT/ dr'E max [Xee|
BO IT? MﬁBo(m) tlﬁBo(m) .FkXFk/

< V/IN(ER) - (2X v 25 Y (27K A 27K YR T ||V |ag
= /In(uR) - h* || V2q
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Proof of Lemma 3 - Probabilistic estimate |l

as desired.
We used

[ drlgmn+ Dl mp
MJTBQ(%)

1/2 1/2
a1 2
<R> (/ dr|lg(n. +7)||45(A;)> (/ dr 1>
M Bo(X) M:NBo()

N ||g||L2(Mt)

Nr. 29



Proof of Lemma 3 - Deterministic estimate |

Recall X, 1= |3 jene w0 () 5 Tegyioan V6 + e By
Hélder

Xeel < )

jenzd

Z V(Xi +y)]'x,-65’j(%o+h)£l(k)§l§k )

i

< D IV + ) Leg e inlle il 1€ e -

jehzd
Since

1€

i [1€flle= < 270 ig(n, +7) 2

15c

g’ (mr + e, az)

Nr. 30



Proof of Lemma 3 - Deterministic estimate |l

and (using |{j € hZ9 : x; +y € Qp+j}| = 1 for all i and Hélder),
> IV(x V) g eanlle = Vi +y)Lgeg o inllan
jehzd
= [IV(xi + ¥) e snllas =1V +y)le
< (R % | V(xi + y)ll oo -

Thus, we obtain (again by Holder)

/ dy/ dT/ dr’ max |X§’§/‘
Bo(X) I MinBo(2) MyNBo(¥)  FrxFu

_d d_ _ /
S (Rp)™ % pu3a ||V g - 27 (KHFD
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Local restriction theory

r. 32



Local restriction theory |

(g dU)VHLp’(Rd) S ||g||Lq’(M) < (g dJ)v||LP'(BR(XO)) < HgHLq/(M)

forall xo € RY, R >0, g € LY (M).
Localization in x-space induces a blurring in {-space. = It suffices to
consider the 1/R-neighborhood Ny, (M) of M. In fact,

1&g o)1l 1+ (Baro)) S HgHLq/ wy forall g e L9 (M)
S FY N (Brro)) S 4 ||F | ‘Wija(my  Forall Fre L9 (Nyr(M))

Moreover, the uncertainty principle implies that F should be constant on
1/R-balls.
Lemma 5 (Locally constant lemma)
For any f € S(R?) with supp(f) C Bo(R) we have
HfHLl(w )
Hf||,_oo (B(1)) S 7( for any ball B(%) with radius %. Here

(1)) = (1+R dlst(f B(%)) 1.

R

Nr. 33



Local restriction theory I

Hence, it is natural to approximate F (the function on Ny g(M) in
Fourier space) by

F= Z F(n)lg,r-1)

neny

where A, € M is a maximal %—separated subset.

Then, the continuous and discrete restriction estimates are equivalent to
each other.

Definition 6

Let Discres’(M, p, q) denote the smallest number s.t. the following
estimate holds for all R > 2, each collection A € M of %—separated
points, each sequence a, € C, and each ball B(R):

. d=1
| Z dv e(V'X)”LP’(B(R)) < Discres'(M, p, q)R ||3u||eq’(/\;)’

vEeN

Nr. 34



Local restriction theory Il

Definition 7
Similarly for o R > 1 let A, C B(R) denote a %—net and

Discres)(M, p, q) denote the smallest number s.t.

_a . 41
wo | Z av eV X)lp n,nB(R)) < Discres")(M, p, q)R " llav 0 (s -
VEA;

Theorem 8
Let1l < p,q <oco. Then

Discres") (M, p, q) ~ Discres' (M, p, 4) < || Fisll o (s 152

The (second) upper bound is standard, cf. Demeter’s book.
To prove “~", we use among others

Lemma 9
Let v € S(RY) with supp v C By(1/h), A1 be a set of h-separated
points, and p > 1. Then

WPl goin, 1) S VIl o(wey -

Nr. 35



Covering numbers in Banach spaces
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Covering numbers i in Banach spaces
Recall Az € My was a g-net with AR > 1 and A, C B(R) was a ;-net

with Ry > 1.
Recall the discrete extension operator

S 2 (Ng) — (A, N B(R)),

{gn + ) = LD e((xi+y)w +7)gln +7)}i
vEN

where x; € A, y € Bo(lu—o), and 7 € By(R).
Earlier we claimed the expansion

Sg)i=Y &M, e F C (AN B(R))

k>0

with
> In|Fk| < 4\ 1In(uR),

> €5l S ACTHEN2 27K g(m, + 72 _(nz), and

1/sc

> ey S AT g, +T>||e

~ usc
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Dual to Sudakov

Let B2 := {x € R": ||x|l2 < 1} (euclidean unit ball) and let || - || x be
another (semi-)norm on R" with corresponding unit ball
BX ={x € R": |x||x < 1}. Define the covering number

N(BZ,BY,t) =min{k e N|3(x)_, : B2 C | J (x+tB))}.
i=1,....k
Example: N(B2,B2,t) ~ t~" when t < 1.

Theorem 10 (Pajor, Tomczak—Jaegermann ('86) / Pajor,

Talagrand (in Bourgain, Lindenstrauss, Milman) ('89))
Let

n
_1
A, ::/S Ixlxdp(x) ~ n 2Bl Y gejlix
n— J:]-

where g; are gaussian rv's and {€;}?_; denotes the standard basis in R".

Then
InN(B2,BX,t)<t™2.n- A2

Nr. 38



Application of dual to Sudakov |

Let |[x[x := [|Sx||¢ee for a linear map S : ¢2 — £39. By Dudley's
inequality,

A = cn*%Ew k:n;,a.‘.).(,m (S[Z gie]) (k)
J

Nl

S Vinm sup | Y 1(Se)(K)Plgll,

Thus, B2 can be covered by N many tBX-balls with
InN(BZ,BY.t) St72n-n~2(Inm)?||S|%, e = t2In(m)[|S|[%_, poe

and the right side is independent of n.
Equivalently, since ||x||x = [|Sx][¢, we can cover {Sx : ||x[[ < 1} by N
many tB;; balls.

Nr. 39



Application of dual to Sudakov Il
In the application S : (2. (Ag) — (A, N B(R)). Thus, m ~ (Ru)¢ and
151l ez, (Az)—s e (A, nB(RY) S ACTHTA/2pdloe,
Now let us cover {Sx : [[x|l < 1} by UJN;I By, (tj) where t; = 27/ and
In(N;) < 1.“Jf2 In(uR)AY~1. We collect the centers ¢; of these balls in the
family/net & C (A, N B(R)). Then

max min [|Sx — ¢; <t
max min [[Sx = gjlle <

or equivalently there is 7; € £>°(A, N B(R)) with ||7j]|c < tj such that
Sx = ¢; +m;.
Now telescope, i.e.,
Sx=¢k+mk=cdo—do+d1— 1+ P2 — 2+ ... — k-1 + P+, ¢ E€E,
where ¢, depends on Sx. Thus,
1Sx = (¢o + 61 — do + d2 — b1 + o + Ik — Ph—1)lloo = [1Mlloe < 27F

and the right side vanishes as k — oc.
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Application of dual to Sudakov IlI

In particular, we pick the ¢; above such that the difference
|¢; — dj-1lloc <277 + 21 (e.g., by taking ¢; such that
|Sx — ¢;]| < 277). (Thus, ¢k depends on Sx; ¢x_1 depends on Sx and
¢k; and so on.)
Collecting all vectors £K) = ¢, — ¢i_1 for which [|€K)|| < 27K 4- 21K
we may thus obtain sets
Fi CE — Ek—1={k — k-1 ¢k € Ek, k-1 € Ek—1} for k > 1 and
Fo = &, and obtain, for any x € K%, the expansion

Sx =Y W for cW e F, C 1>(A, N B(R))

k>0

with [[€®)[loe S 27%lg(m +7) 2 (n)- BY [Fil < [Ek] - |Ek—1] and
dual-to-Sudakov, we have

In|Fi| <In|E] +1In|E—1] S 45 In(Rpu) - N1,

Finally,
144 /
||§(k)Hep/(/\mB(R)) SN2 g, + 7|2

is a consequence of

usc

< A(LF 4)/2 d/p

2.(A5) =07 (N, NB(R)) ~
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