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Introduction

Consider a Lorentzian manifold (M, g).

The metric has signature (+,−, . . . ,−).

For instance Minkowski space: R1+d, g0 = dt2 − dy21 − · · · − dy2n−1.

The Lorentzian Laplace–Beltrami operator or wave operator:

�g =

n−1∑
i,j=0

|g(x)|−
1
2 ∂xi |g(x)|

1
2 gij(x)∂xj

On Minkowski space,�g = ∂2
t − (∂2

y1 + · · ·+ ∂2
yn−1

).

�g (+ non-linearity) has rich theory of solving Cauchy problem, asymp-

totic analysis of solutions, propagation of singularities, etc.

Relatively recently: global theory of�g (Fredholm property, Hilbert

space invertibility) Vasy ’13 et al.. Techniques of microlocal and

asymptotic analysis in relation with classical dynamics and geometry.

2 / 19



Introduction

Consider a Lorentzian manifold (M, g).

The metric has signature (+,−, . . . ,−).

For instance Minkowski space: R1+d, g0 = dt2 − dy21 − · · · − dy2n−1.

The Lorentzian Laplace–Beltrami operator or wave operator:
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|g(x)|−
1
2 ∂xi |g(x)|

1
2 gij(x)∂xj

On Minkowski space,�g = ∂2
t − (∂2

y1 + · · ·+ ∂2
yn−1

).

�g (+ non-linearity) has rich theory of solving Cauchy problem, asymp-

totic analysis of solutions, propagation of singularities, etc.

As opposed to4g on Riemannian manifold,�g is non-elliptic.

How is global�g related to geometry of (M, g)?
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Spectral zeta function

(M, g) compact Riemannian =⇒ 4g has discrete spectrum.

Recall Riemann zeta ζ(α) =
∑∞

λ=1 λ
−α, then spectral zeta:

C 3 α 7→ ζ4(α) =
∑

λ∈sp(4g)\{0}

λ−α.

Theorem (Minakshisundaram–Pleijel, Seeley)

The function ζ4(α) = TrL2

(
4−α

g

)
is holomorphic on Reα > n

2 , with

meromorphic continuation to α ∈ C and poles at {n
2 ,

n
2 − 1, . . . , 1}.

+local version with densities:

α 7→ 4−α
g (x, x) holomorphic on Reα > n

2 , with meromorphic continuation

to α ∈ C and poles at {n
2 ,

n
2 − 1, . . . , 1}, smooth in x ∈ M .

Here4−α
g (x, x′) is the Schwartz kernel of4−α, so

TrL2

(
4−α

g

)
=

∫
M

4−α
g (x, x)dx
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The spectral action principle

The heat kernel expansion (small t expansion of e−t4g (x, x)) relates4g with

invariants, in particular scalar curvatureRg(x).

Theorem (well-known from elliptic theory)

When dim(M) = n > 4,

res
α=n

2 −1
TrL2

(
4−α

g

)
=

∫
M

Rg(x)

6(4π)
n
2 Γ
(
n
2 − 1

) .
Local version for diagonal value x = x′ of Schwartz kernel4−α

g (x, x′):

res
α=n

2 −1
4−α

g (x, x) =
Rg(x)

6(4π)
n
2 Γ
(
n
2 − 1

) .
— This is a “spectral action” for Euclidean gravity: δgRg = 0 is equivalent

to Einstein equations.

— Poles are geometric⇒ locality of counterterms in zeta function

regularisation in QFT Hawking ’77
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Theorem (well-known from elliptic theory / semi-classical analysis)

For any Schwartz function f ,

f
(
4g/λ

2
)
(x, x) =

N∑
j=0

λn−2jCj(f) aj(x) +O(λn−2N−1),

where aj(x) are the heat kernel coefficients.

— There is a vectorial version for Dirac operators f
( /D2

λ2

)
.

— Twisting the bundle yields Standard model Lagrangian

Chamseddine–Connes ’97

But no direct physical meaning unless (M, g) Lorentzian...

Fundamental difficulties: Lorentzian�g not elliptic, not bounded from

below. There is no Lorentzian heat kernel.
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So what about�g?

For (M, g) Lorentzian,∆g becomes�g. Two hints:

1. The local geometric quantities (e.g.Rg(x)) still make sense.

— Lorentzian version of local heat kernel coefficients aj(x) by
solving analogous transport equations

2. Recent results show essential self-adjointness of�g:

— Static spacetimes (e.g. ∂2
t −∆h with time-independent

coefficients): Dereziński-Siemssen ’18

— For perturbations of Minkowski space (and more general

non-trapping Lorentzian scattering spaces):

Vasy ’20 (short-range), Nakamura–Taira ’20 (long-range)

(related results: Gérard–Wrochna ’19–’20, Kamiński ’19,

Dereziński-Siemssen ’19, Colin de Verdière–Le Bihan ’20, Taira ’20)

— Asymptotically static spacetimes Nakamura–Taira ’22

⇒ f(�g) well-defined!

But is there any relationship between 1. and 2. like in elliptic case?
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I. Main results



Main theorem

Assume (M, g) is a (short-range) perturbation of Minkowski space (or more

general non-trapping Lorentzian scattering space, see later), of even dimension n.

Theorem (Dang, Wrochna)

For ε > 0, the Schwartz kernel of (�g − iε)−α has for Reα > n
2 a

well-defined on-diagonal restriction (�g − iε)−α(x, x), which

extends as a meromorphic function of α ∈ C with poles at {n
2 ,

n
2 − 1, n

2 − 2, . . . , 1}. Furthermore,

lim
ε→0+

res
α=n

2 −1
(�g − iε)

−α
(x, x) =

Rg(x)

i6(4π)
n
2 Γ
(
n
2 − 1

) ,
whereRg(x) is the scalar curvature at x ∈ M .

— Spectral action for gravity. Proof directly in Lorentzian signature.

Perturbations of Minkowski included (no symmetries assumed).

— The ε → 0+ avoids low-frequency problems and responsible for

relationship with Feynman propagator.
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Main theorem 2

Assume (M, g) is a (short-range) perturbation of Minkowski space (or more

general non-trapping Lorentzian scattering space, see later), of even dimension n.

Theorem (Dang, Wrochna)

For any Schwartz f with Fourier transform in ]0,+∞[,

f
(
(�g + iε)/λ2

)
(x, x) =

N∑
j=0

λn−2jCj(f) aj(x)+O(ε, λn−2N−1),

where aj(x) are Hadamard coefficients.
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II. From resolvent to geometric invariants



General plan of proof

1) Let P = �g on Lorentzian (M, g). If resolvent exists, (P − iε)−α

obtained as contour integral of (P − z)−1. For α = N + µ > 0:

γε

ε
ε
2

Re z

i Im z

(P − iε)−α =
1

2πi

∫
γε

(z − iε)−µ(P − iε)−N (P − z)−1dz, .

2) Construct a Hadamard parametrixHN (z) and show it approximates

the resolvent uniformly in z.

3) Deduce regularity properties, compute poles and get curvatureR
from contour integrals ofHN (z).
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Construction of Hadamard parametrixHN (z):

Let Fα(z, |.|g) be locally given by

Fα(z, x) =
1

Γ(α+ 1)(2π)n

∫
ei〈x,ξ〉

(
|ξ|2g0 − i0− z

)−α−1
dnξ

(in normal coordinates). Candidate for parametrix of orderN :

HN (z, .) =

N∑
k=0

ukFk(z, |.|g) ∈ D′(U).

solved modulo errors by transport equations thanks to

(P − z) (uFα) = αuFα−1 + (Pu)Fα + (hu+ 2ρu)
Fα−1

2

for all u ∈ C∞(M), where h(x) = bj(x)g0,jkx
k and ρ = xk∂xk .
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Hölder–Zygmund and microlocal estimates for Fα(z, |.|η)

competition between regularity in x and decay in z

use of Hadamard parametrix wide-spread in QFT; also analytic continuation of

eigenfunctions Zelditch ’18 and Lorentzian local index theory Bär–Strohmaier

’20. We followed mostly Hörmander vol. 3 and Sogge ’14

z-dependent Hadamard in compact Riemannian setting used by Sogge ’88,

Dos Santos Ferreira–Kenig–Salo ’14, Bourgain–Shao–Sogge–Yao ’15

Compute poles and get curvature:

Now (P − iε)−α(x, x) expressed by contour integrals of Fβ(z, .).

1

2πi

∫
γε

(z−iε)−αFk(z, .)dz =
(−1)kΓ(−α+ 1)

Γ(−α− k + 1)Γ(α+ k)
Fk+α−1(iε, .)

scalar curvature in normal coordinates comes from

P = ∂xkgkj(x)∂xj + gjk(x)(∂xj log |g(x)|
1
2 )∂xk ,

transport equation u1(0) = −Pu0(0) = −P (|g(0)|
1
4 |g(x)|−

1
4 )|x=0

and gij(x) = g0,ij +
1
3Rikjlx

kxl +O(|x|3).
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Hadamard parametrixHN approximates (P − z)−1?

(P − z)

(
N∑

k=0

ukFk(z, .)χ

)
= |g|−

1
2 δ∆ + (PuN )FN (z, .)χ+ rN (z),

where PuN highly regular, and rN singular (but 0 near diagonal).
Applying (P − z)−1 well-defined and yields good errors if (P − z)−1

is shown to have special structure of singularities and mapping

properties uniformly in z.

Think of the distribution (x− i0)−1 on R: it is singular at x = 0, but has good

multiplicative properties like (x− i0)−1(x− i0)−1 = (x− i0)−2.

Here, “controlling singularities” means showing existence of

B1, B2 ∈ Ψ0(M), as elliptic as possible s.t.

B1(P − z)−1B∗
2 : L2(M) → C∞(M)

with seminormsO(1 + |z|)− 1
2 . In our case, possible except ifB1 forward

connected withB2 (in other words, (P − z)−1 has Feynman wavefront set).
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III. Analysis of (P − z)−1



Suppose P = ∂2
t −4, Im z > 0. Retarded propagator of P − z:

θ(t− s)
ei(t−s)

√
−4−z − e−i(t−s)

√
−4−z

2i
√
−4− z

Looks like no chance of ‖(P − z)−1‖ 6 |Im z|−1
. But:

“Every particle in Nature has an amplitude to move

backwards in time, and therefore has an anti-particle.”

– Richard Feynman

(
(P − z)−1u

)
(t, .) = −1

2

∫
e−i|t−s|

√
−4−z

√
−4− z

u(s, .)ds. (1)

The boundary value (P − i0)−1 is the Feynman propagator.
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∫
e−i|t−s|

√
−4−z

√
−4− z

u(s, .)ds. (1)

The boundary value (P − i0)−1 is the Feynman propagator.

But for general P with t-dependent coefficients, nothing like (1) exists...

Start with (1) at infinity, then propagate!
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(
(P − z)−1u

)
(t, .) = −1

2

∫
e−i|t−s|

√
−4−z

√
−4− z

u(s, .)ds. (1)

The boundary value (P − i0)−1 is the Feynman propagator.

Use radial estimates due toMelrose ’94 and Vasy ’13-’19 (or assume g is
a compactly supported perturbation of Minkowski metric g0) +
propagation estimates Hörmander ’71
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Lorentzian scattering spaces

Example: Minkowski metric g0 = dx2
0 − (dx2

1 + · · ·+ dx2
n−1) on Rn

extends to radial compactification Rn
defined using boundary-defining

function ρ = (x2
0 + x2

1 + · · ·+ x2
n)

− 1
2 . Regularity w.r.t. ρ2∂ρ = −∂r

Definition: Lorentzian sc-metrics are C∞ sections of scT ∗M ⊗s
scT ∗M ,

where scT ∗M generated by ρ−2dρ, ρ−1dy1, . . . ρ
−1dyn−1.

Null geodesics lift to null bicharacteristics on scT ∗M (rescaled and extended at

∂M appropriately)

Definition:

(M, g) non-trapping Lorentzian sc-space

if there are sinks/sources L± above ∂M , and

null bicharacteristics flow from and to L− and L+.

Includes small perturbations of Minkowski

space and asymptotically Minkowski spaces.
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From null bicharacteristic flow to global estimates

dynamics of null bicharacteristics in scT ∗M
⇓

classical quantities increasing along flow

⇓
pos. commutator estimates inΨm,`

sc -calculus

⇓

1. Deduce Fredholm property and invertibility of P − z

2. Deduce singularities of (P − z)−1(x, x′)

problem of computing WF
(
(P − z)−1

)
analogous to Dyatlov–Zworski ’16, but

our strategy closer to Vasy–Wrochna ’18 + z-dependent calculus of Shubin

’01, parametrix similar to Gérard–Wrochna ’19

work in progress with N.V. Dang and A. Vasy: WF
(
(P − z)−1

)
directly from

(improved) estimates, also for non-selfadjoint generalisations of the problem
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IV. Summary



To sum up...

We have shown relationship of Lorentzian spectral zeta function density

ζg,ε with space-time geometry.

⇒ (Lorentzian!) Gravity can be derived from a spectral action.

I We also get the theorem for ultra-static spacetimes and compactly

supported pertubations. One can conjecture extensions to

asymptotically static spacetimes (and beyond, especially if weakening

essential self-adjointness).

I Relationships with QFT on curved spacetimes : (�g − iε)−α useful in

zeta renormalization.

Remarks: (�g − z)−1 is not a retarded or advanced propagator, but a

Feynman propagator: turns out to have better properties in non-linear

problems Gell-Redman–Haber–Vasy ’16.

I Is there a version (even of the Hadamard parametrix) for anti-de Sitter

spacetimes?

Thank you for your attention!
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IV. Appendix



Positive commutator estimates

Toy model: P = P ∗ bounded, and ∃ bounded A andD s.t.:

[P, iA] > (1+D2)s. (*)

Undo the commutator:

1

2
〈[P, iA]u, u〉 = 〈APu, u〉 − 〈PAu, u〉

2i

=
〈Pu,Au〉 − 〈Au,Pu〉

2i
6 |〈Pu,Au〉|,

By Cauchy–Schwarz,

|〈Pu,Au〉| 6 C‖(1+D2)−s/2Pu‖‖(1+D2)s/2u‖ =: C‖Pu‖−s‖u‖s.

In combination with (*):

‖u‖2s 6 C‖Pu‖−s‖u‖s,

hence invertibility statement ‖u‖s 6 C‖Pu‖−s.



Positive commutator estimates

The existence of suitable A s.t.

[P, iA] > (1+D2)s.

is extremely rare. But we can expect to prove it “somewhere in phase

space”.

I If P ∈ Ψs(M) and A ∈ Ψ`(M) then [P, iA] ∈ Ψs+`−1(M) and

σpr ([P, iA]) = {p, a}mod Ss+`−2(M).

The flow of {p, ·} in {p = 0} is the classical Hamilton flow, or

bicharacteristic flow (note that in {p 6= 0} elliptic theory applies).
I non-compact settings require weighted Sobolev spaces: extra weight

(1+ |x|2)` (Ψm,`
sc (M) calculus)

I non-selfadjointness can be serious trouble (if we know nothing of

P − P ∗), or valuable help (for instance P − iε with ε > 0)



Dirac operators

The Lorentzian Dirac operator /D satisfies /D
2
= �g+ l.o.t. in vector bundle

sense. It is formally self-adjoint w.r.t. the canonical indefinite inner product,

but (in general) not for an honest scalar product. However, on Lorentzian

scattering spaces, P := /D
2
satisfies

P ∗ − P ∈ Ψ1,−1−δ
sc (M)

for instance for the scalar product 〈·, γ(n)·〉L2(M ;SM) used in quantization

work in progress (with N.V. Dang & A. Vasy): P = /D
2
on non-trapping

Lorentzian scattering space (M, g) as closed operator.

Conjecture

/D
2
is a closed operator, and:

sp( /D
2
) ⊂ R ∪ {some isolated poles in |Im z| 6 R}

This uses stronger resolvent estimates using a resolvedΨm,`
sc -calculus

obtained from blowing up the corner of scT ∗M .
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Conjecture
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is a closed operator, and:

sp( /D
2
) ⊂ R ∪ {some isolated poles in |Im z| 6 R}

The techniques give a fully microlocal implementation of subelliptic

estimate of Taira ’21:

u ∈ H
m+ 1

2 ,`−
1
2

sc (M), (P − z)u ∈ Hm,`
sc (M)⇒ u ∈ Hm,`

sc (M).
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Remark: No role played by indefinite 〈·, ·〉L2(M ;SM)
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