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Introduction

Consider a Lorentzian manifold (M, g).

The metric has signature (+,—,...,—).
For instance Minkowski space: R1*4, go = dt? — dy? — - -+ — dy?_;.

The Lorentzian Laplace—Beltrami operator or wave operator:

n—1
_1 1
Oy = > 19(@)| 72 91 lg()|2 g7 (2) 0y
4,j=0

On Minkowski space, [, = 0? — (851 + -+ 333”,1)-

Uy (+ non-linearity) has rich theory of solving Cauchy problem, asymp-
totic analysis of solutions, propagation of singularities, etc.

Relatively recently: global theory of L1, (Fredholm property, Hilbert
space invertibility) Vasy ’13 et al.. Techniques of microlocal and
asymptotic analysis in relation with classical dynamics and geometry.
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Introduction

Consider a Lorentzian manifold (M, g).

The metric has signature (4, —, ..., —).
For instance Minkowski space: R'*?, go = dt? — dy? — --- — dy?_,.

The Lorentzian Laplace—Beltrami operator or wave operator:
n—1 L L
Oy = Y 19(0)] ™2 Ot l9(@)|? 9% (2),
i,j=0

On Minkowski space, [, = 8,52 — (051 +- 4+ 35,1,1)-

Ly (+ non-linearity) has rich theory of solving Cauchy problem, asymp-
totic analysis of solutions, propagation of singularities, etc.

As opposed to A4, on Riemannian manifold, [, is non-elliptic.

?  How is global O, related to geometry of (M, g)?
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Spectral zeta function

(M, g) compact Riemannian = A, has discrete spectrum.

Recall Riemann zeta ((a) = >_5.; A™%, then spectral zeta:

Coamlala)= > A~

A€sp(Lg)\{0}

Theorem (Minakshisundaram—Pleijel, Seeley)

The function (a(a) = Trpz (A, ) is holomorphic on Re o > %, with

meromorphic continuation to o € C and poles at {5, 5 —1,...,1}.
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Spectral zeta function

(M, g) compact Riemannian = A, has discrete spectrum.
Recall Riemann zeta ((a) = >_5.; A™%, then spectral zeta:

Coamlala)= > A~

A€sp(Lg)\{0}

Theorem (Minakshisundaram—Pleijel, Seeley)

The function (a(a) = Trpz (A, ) is holomorphic on Re o > %, with

meromorphic continuation to o € C and poles at {5, 5 —1,...,1}.
+local version with densities:

a > Ag_a(:c, x) holomorphic on Re o > 5, with meromorphic continuation
toa € Candpolesat {%,45 —1,...,1}, smoothinx € M.

Here A, (z, a’) is the Schwartz kernel of A™%, so

Try2 (A;o‘) :/ Ay (z, x)dx
M
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The spectral action principle

The heat kernel expansion (small ¢ expansion of e *%9 (z,x)) relates A4 with
invariants, in particular scalar curvature Ry(z).

Theorem (well-known from elliptic theory)
When dim(M) =n > 4,

—a\ __ fMR
a:r%s_lTrLz (A,%) = 6m T (2 = 1)’

Local version for diagonal value x = x' of Schwartz kernel A;”‘(x, x'):

—a _ Ry()
A o)

— Thisis a “spectral action” for Euclidean gravity: ,R, = 0 is equivalent
to Einstein equations.

— Poles are geometric = locality of counterterms in zeta function
regularisation in QFT Hawking ‘77
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Theorem (well-known from elliptic theory / semi-classical analysis)

For any Schwartz function f,
F(L8g/N) (2, 2) Z)\” 205(f) aj(z) + QA=)
where a;(x) are the heat kerne/ coefficients.

2
— There is a vectorial version for Dirac operators f(%)

— Twisting the bundle yields Standard model Lagrangian
Chamseddine—Connes '97
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Theorem (well-known from elliptic theory / semi-classical analysis)

For any Schwartz function f,
N

f(Ag/)\2)(x7x) = Z}\n—QjCj(f) aj(x) + (9()\71—2N—1)7

Jj=0
where a;(x) are the heat kernel coefficients.

2
— There is a vectorial version for Dirac operators f(%)

— Twisting the bundle yields Standard model Lagrangian
Chamseddine—Connes '97

But no direct physical meaning unless (M, g) Lorentzian...

Fundamental difficulties: Lorentzian [, not elliptic, not bounded from
below. There is no Lorentzian heat kernel.
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So what about [1,?

For (M, g) Lorentzian, A, becomes [J,. Two hints:

1. The local geometric quantities (e.g. R, (z)) still make sense.

— Lorentzian version of local heat kernel coefficients a;(z) by
solving analogous transport equations

2. Recent results show essential self-adjointness of [],:

— Static spacetimes (e.g. 07 — A}, with time-independent
coefficients): Derezifski-Siemssen 18

— For perturbations of Minkowski space (and more general
non-trapping Lorentzian scattering spaces):
Vasy '20 (short-range), Nakamura—Taira ‘20 (long-range)
(related results: Gérard—Wrochna "19-'20, Kaminski ‘19,
Derezinski-Siemssen ’19, Colin de Verdiere—Le Bihan '20, Taira '20)

— Asymptotically static spacetimes Nakamura—Taira '22

= f(d,) well-defined!

But is there any relationship between 1. and 2. like in elliptic case?
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I. Main results



Main theorem

Assume (M, g) is a (short-range) perturbation of Minkowski space (or more

general non-trapping Lorentzian scattering space, see later), of even dimension n.

Theorem (Dang, Wrochna)

For e > 0, the Schwartz kernel of (CJ, — i)~ has forRea > 5 a
well-defined on-diagonal restriction (O, — i)~ “(x, z), which
extends as a meromorphic function of o € C with poles at { %,
5—1,% —2,..., 1}. Furthermore,

. . \—a )
lim res (4, —1ic ,T) = m ,
St o tge, Bo—ie) T @) = e

where R (x) is the scalar curvature at x € M.

— Spectral action for gravity. Proof directly in Lorentzian signature.
Perturbations of Minkowski included (no symmetries assumed).

— The ¢ — 07 avoids low-frequency problems and responsible for
relationship with Feynman propagator.
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Main theorem 2

Assume (M, g) is a (short-range) perturbation of Minkowski space (or more
general non-trapping Lorentzian scattering space, see later), of even dimension n.

Theorem (Dang, Wrochna)

For any Schwartz f with Fourier transform in |0, +00],
f((Qy +ie)/N?) (z, z) Z)\" HCi(f) aj(x) + O(e, "2y,

where a;(x) are Hadamard coefficients.

8/19



Il. From resolvent to geometric invariants



General plan of proof

1) Let P =0, on Lorentzian (M, g). If resolvent exists, (P — i¢) ™
obtained as contour integral of (P — 2)~'. Fora = N + u > 0:

(Pie) ™ = b [ iy i (P2,

i)
2) Construct a Hadamard parametrix Hy (z) and show it approximates
the resolvent uniformly in z.

3) Deduce regularity properties, compute poles and get curvature R
from contour integrals of Hy (z).
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Construction of Hadamard parametrix Hy (z):

Let Fo(z,|.|4) be locally given by

1

Fa(z2) = 5@

/e“w@ (12, —i0—2) """ dne
(in normal coordinates). Candidate for parametrix of order V:
N
Hy(z,.) =Y uFi(z,|.]g) € D'WU).
k=0

solved modulo errors by transport equations thanks to

Fafl

(P — 2) (uF,) = auFy—1 + (Pu)F, + (hu + 2pu)

forallu € C°°(M), where h(z) = b/ (z)go jro" and p = 2%0,.
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Holder-Zygmund and microlocal estimates for F,,(z, |.|,))
A competition between regularity in x and decay in z

L2 use of Hadamard parametrix wide-spread in QFT; also analytic continuation of
eigenfunctions Zelditch ‘18 and Lorentzian local index theory Bar—-Strohmaier
’20. We followed mostly Hérmander vol. 3 and Sogge ‘14

L2 z-dependent Hadamard in compact Riemannian setting used by Sogge ’88,
Dos Santos Ferreira—Kenig—Salo 14, Bourgain—Shao—Sogge—Yao '15

Compute poles and get curvature:
Now (P — i)~ %(x, z) expressed by contour integrals of Fz(z, .).

1 - __ (=DMT(at)
(i) (= ) = F R T+ R

Ve

o — F _1(ze,.
oi ) k4o 1(157 )

scalar curvature in normal coordinates comes from
. . 1
P = 0,0 ™ (2)0,5 + g7" () (05108 |g(2)|2) Dy,

transport equation u; (0) = —Pug(0) = —P(|g(0)|% |g(:v)|7%)|z:0
and g;;(z) = go,ij + 3 Ricjiz"z' + O(|z*).
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Hadamard parametrix H approximates (P — z)~!?

N
(P =2) (Z ukFi(z, -)X) = lgI"26a + (Pun)Fx (2, )x +7n(2),
k=0

where Puy highly regular, and r singular (but 0 near diagonal).
Applying (P — 2)~! well-defined and yields good errors if (P — z)~
is shown to have special structure of singularities and mapping
properties uniformly in z.

1

Think of the distribution (z — i0) ™" on R: it is singular at = 0, but has good
multiplicative properties like (z — i0) ™ (z — 30) " = (z — i0) 2.

Here, “controlling singularities” means showing existence of
Bi, By € WO(M), as elliptic as possible s.t.

By(P—2)"'B; : L*(M) — C>(M)

with seminorms O(1 -+ |z|)~2. In our case, possible except if B; forward

connected with By (in other words, (P — z)*l has Feynman wavefront set).
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Il Analysis of (P — 2)~!



Suppose P = 9? — /A, Imz > 0. Retarded propagator of P — z:
ei(tfs)\/fAfz _ e*i(tfs) —A—2z
20/ =N\ — z

Looks like no chance of ||(P — z)~!|| < |im z| ", But:

0t —s)
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Suppose P = 97 — A\, Imz > 0. Retarded propagator of P — z:
eit=s)V=DB—2z _ —i(t—s)V=DB—=
2iv/—AN —z

Looks like no chance of ||(P — 2)~!|| < |Im z| ", But:

0(t —s)

“Every particle in Nature has an amplitude to move
backwards in time, and therefore has an anti-particle.”
— Richard Feynman

(P=2)""u)(t,.) = 1 Mu(s, .)ds. (1)
2 V=D =z
The boundary value (P — i0)~! is the Feynman propagator.
But for general P with t-dependent coefficients, nothing like (1) exists...

W Start with (1) at infinity, then propagate!
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Suppose P = 9? — /A, Imz > 0. Retarded propagator of P — z:
eit=s)V=DB—z _ —i(t—s)V=DB—=
2iv/—A — z

Looks like no chance of ||(P — )~ !|| < |Imz| . But:

0t —s)

“Every particle in Nature has an amplitude to move
backwards in time, and therefore has an anti-particle.”

M — Richard Feynman

| 1 e—i\t—s\m
(P—2)"u)(t,.) = 5 A

The boundary value (P — i0)~! is the Feynman propagator.

u(s,.)ds. (1)

¥ Use radial estimates due to Melrose ‘94 and Vasy ’13-"19 (or assume g is
a compactly supported perturbation of Minkowski metric go) +
propagation estimates Hérmander '71
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Lorentzian scattering spaces

Example: Minkowski metric go = dz2 — (dz? + -+ +dz2_,) on R"
extends to radial compactification R" defined using boundary-defining
function p = (22 4 23 + - -- + 22)~ 2. Regularity w.rt. p29, = —8,
Definition: Lorentzian sc-metrics are C'°° sections of **T* M ®s *T*M,
where *T* M generated by p=2dp, p~'dy1, ... p~ ' dyn_1.

Null geodesics lift to null bicharacteristics on *“T™* M (rescaled and extended at
OM appropriately)

Definition:

(M, g) non-trapping Lorentzian sc-space

if there are sinks/sources L above 9M, and

null bicharacteristics flow fromand to L_ and L.

Includes small perturbations of Minkowski
space and asymptotically Minkowski spaces.
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From null bicharacteristic flow to global estimates

dynamics of null bicharacteristics in s<T* M

4

classical quantities increasing along flow

4

. . Y
pos. commutator estimates in Wi -calculus

4

1. Deduce Fredholm property and invertibility of P — z

2. Deduce singularities of (P — z)~!(x, z")

L2 problem of computing WF((P — z)_l) analogous to Dyatlov—Zworski ‘16, but
our strategy closer to Vasy—Wrochna ‘18 + z-dependent calculus of Shubin
01, parametrix similar to Gérard—Wrochna '19

work in progress with N.V. Dang and A. Vasy: WF((P — z)*l) directly from
(improved) estimates, also for non-selfadjoint generalisations of the problem
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IV. Summary



To sum up...

We have shown relationship of Lorentzian spectral zeta function density
(g,e With space-time geometry.

= (Lorentzian!) Gravity can be derived from a spectral action.

» We also get the theorem for ultra-static spacetimes and compactly
supported pertubations. One can conjecture extensions to
asymptotically static spacetimes (and beyond, especially if weakening
essential self-adjointness).

» Relationships with QFT on curved spacetimes : (CJ, — ic)~* useful in
zeta renormalization.

Remarks: (O, — z)*l is not a retarded or advanced propagator, but a
Feynman propagator: turns out to have better properties in non-linear
problems Gell-Redman—Haber—Vasy ’16.

» Is there a version (even of the Hadamard parametrix) for anti-de Sitter
spacetimes?

Thank you for your attention!
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IV. Appendix



Positive commutator estimates

Toy model: P = P* bounded, and 3 bounded A and D s.t.:
[P,iA] > (1 + D?)°. (*)

Undo the commutator:

1 ) _ (APu,u) — (PAu,u)
5([1’:’7 iAlu,u) = 5

_ (Pu, Au) 2— (Au, Pu) < |(Pu, Au)|,
i

By Cauchy—Schwarz,
|(Pu, Au)| < C||(1 + D*) /2 Pul|[|(1 + D*)*/?ul| =: C||Pul| -, |ulls-
In combination with (*):
[ull3 < Cl1Pul|—s|ulls,

hence invertibility statement ||u||s < C||Pul|—s.



Positive commutator estimates

The existence of suitable A4 s.t.
[P,iA] > (1+ D?)".

is extremely rare. But we can expect to prove it “somewhere in phase
space”.

> If P c U%(M)and A € U*(M) then [P,iA] € s~1(M) and
oo ([P,iA]) = {p,a} mod S*=2(M).

The flow of {p, -} in {p = 0} is the classical Hamilton flow, or
bicharacteristic flow (note that in {p # 0} elliptic theory applies).

» non-compact settings require weighted Sobolev spaces: extra weight
(1 + |z[2)? (Wi* (M) calculus)

» non-selfadjointness can be serious trouble (if we know nothing of
P — P*), or valuable help (for instance P — i with e > 0)



Dirac operators

The Lorentzian Dirac operator I satisfies lﬁQ = g+ l.o.t. in vector bundle
sense. It is formally self-adjoint w.r.t. the canonical indefinite inner product,
but (in general) not for an honest scalar product. However, on Lorentzian
scattering spaces, P := Ip” satisfies

P*— Pc UL 170(M)
for instance for the scalar product (-,7(n)-) L2(ar;50s) Used in quantization

#° work in progress (with N.V. Dang & A. Vasy): P = lD2 on non-trapping
Lorentzian scattering space (M, g) as closed operator.
Conjecture
ID2 is a closed operator, and:

sp(Dz) C R U {some isolated polesin |Imz| < R}

This uses stronger resolvent estimates using a resolved \II?Z’Z—caIcqus
obtained from blowing up the corner of €T M.



Dirac operators

The Lorentzian Dirac operator IJ satisfies lD2 = [g+ l.o.t. in vector bundle
sense. It is formally self-adjoint w.r.t. the canonical indefinite inner product,
but (in general) not for an honest scalar product. However, on Lorentzian
scattering spaces, P := lD2 satisfies

P*— P e UL=179(M)
for instance for the scalar product (-, y(n)-) £2(a;50) Used in quantization

#* work in progress (with N.V. Dang & A. Vasy): P = 1?2 on non-trapping
Lorentzian scattering space (M, g) as closed operator.

Conjecture
2.
)" isaclosed operator, and:

sp(lD2) C R U {some isolated polesin |Imz| < R}

The techniques give a fully microlocal implementation of subelliptic
estimate of Taira’21:

we HEY "2 (M), (P — 2)u € HIM (M) = u € HIV'(M).



Dirac operators

The Lorentzian Dirac operator I satisfies ]Z)2 = 4+ l.o.t. in vector bundle
sense. It is formally self-adjoint w.r.t. the canonical indefinite inner product,
but (in general) not for an honest scalar product. However, on Lorentzian
scattering spaces, P := ID2 satisfies

P*— P e UL M)
for instance for the scalar product (-,7(n)-) L2(ar;501) Used in quantization

#* work in progress (with N.V. Dang & A. Vasy): P = ]D2 on non-trapping
Lorentzian scattering space (M, g) as closed operator.

Conjecture
2,
)" is a closed operator, and:

sp(lDQ) C R U {some isolated polesin |Imz| < R}

Remark: No role played by indefinite (-, -) 2 (ar;501)
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