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©® Quantum walks and the chiral symmetry index,
® The ‘anisotropic algebra’, crossed products and the essential spectrum,
© Index formulas,

® (Appendix) Miscellaneous extra topics (B £ 7).



Quantum
walks and
operator
algebras

Chris Bourne

Quantum
walks

Quantum walks — a rough introduction

“Quantum analogue of random walk”

Discrete time step — unitary operator U on H = ¢?(Z%, C") with decomposition
into a shift and coin,

U=SC, S, C eU[*(zt,cm),
S ~ matrix of shift operators, C: 7% —Uu(Cm).

Studied from many perspectives (probability, quantum information theory,
mathematical physics, ...)
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Example — flip a coin and move left/right

Take H = (*(Z,C?), initial state 1o = § ® () and consider U™, where

vgo=(5 )5 1), wisen
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Can define random variables using quantum measurement and superposition of

states.
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Chiral symmetric unitaries

We say that U is chiral symmetric if there is a self-adjoint unitary I" such that

ror = v~

The spectrum of chiral-symmetric U is symmetric about the real axis.

Examples (Chiral-symmetric o(U))
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Jusntum Oess(T) = {N € a(T)| T — A1 not Fredholm}.
If U chiral symmetric and £1 ¢ 04ss(U), can define the symmetry index,

Si:l:(U7P) =Tr (F|Kcr(U$1)) € Z.

Lemma (Basic properties, [Cedzich et al. '18] [B. '23])

(1) |Sii( U, I‘)| gives a lower-bound on the number of ‘bound states’ of U at 1.
@ sii (U, T) is locally constant in the norm-topology.

© If{Ui}iepo,1) is a strongly-continuous path of chiral unitaries and
{6(Ut) }ef0,1) € K(H) norm-continous for supp(¢) in a neighbourhood of £1, then
sit (U, I') constant.

O IfU,T € B, a C*-algebra, and 1 ¢ 0.ss(U), there exists Fy € B Fredholm such
that siy (U,T") = Index(Fy).
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Our aims

Given a quantum walk unitary U € U(¢*(Z%,C™)) would like to:
@ Compute gegs(U),

@ If £1 ¢ 0ess(U), find ‘index formulas’ for six (U, T").
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The anisotropic algebra

Understand oes(U) by understanding the asymptotics of C : Z% — 1/(C™).

Definition
The anisotropic algebra A is a separable and unital subalgebra of L>(Z4, M,(C))
such that

©® If a € A, then a,,(a)(z) = a(z + m) € A for all m € Z7,

@ Co(Z%, My(C)) C 4,

© A~Z(A) ® M,(C).

By Gelfand—Naimark, A ~ C(Q, M,,(C)) with © a compactification of Z¢.
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Example — asymptotically periodic, d =1

Example
Say b:Z — M,(C) is l-periodic, [ € N, if b(z + ) = b(z) for all z € Z.
Fixing [T,1~ € N, we consider functions a : Z — M, (C) such that there are

I*-periodic functions b* with

lim |la(z) — b*(z)|| = 0.

T—F00

In this case @ = ZU{0,...,I" =1} U{0,...,I” —1}.




Quantum
walks and

e Example — Cartesian anisotropy, d = 2

algebras

Chris Bourne

Essential EXa AL ple
spectrum
Let Z* = Z U {400, —oc} and consider as
a:7Z? — M,(C) that extend to (7
1 (Z5)%2 5 M,(C). O
That is, we have y
- z
o, a;t : ZE = M,(C), Ax
a; (y) = a(o0,y), ay(z) = a(z, £o0),
and Q ~ (Z*+)®2, o _
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Coin C € A C L™(Z% M,(C)), but U = SC also involves the shift operators,

Essential
spectrum

B[e*(2,C")]
Ue C(Q, M,(C)) x 2% = { > Smap, ] U € A} ’ ,

meZ4 finite

Because Cy(Z4, M, (C)) C A ~ C(Q2, M,,(C)), it is an ideal:

0 — Co(Z% M,(C)) = C(Q, M,(T)) = C(Q\ Z% M,(CT)) — 0.

Using properties of crossed product algebras cf. [Williams, '07],
0 — Co(Z4, M,(C)) x 2% — C(Q, M, (C)) x ¢ % C(Q\ Z¢, M,,(C)) x Z¢ = 0

also exact.
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Crossed products and ge(U)

Using more properties of crossed product algebras,
Co(Z4, My (C)) x 27 = K[*(27,C)],

SO
0— K(H) — C(Q, M,(C)) x 2¢ L5 0(Q\ Z¢, M,(CT)) x Z¢ — 0.

Because ¢ is ‘quotient by compacts’, oess(U) = o(q(U)).

However, C(Q\ Z%, M,(C)) x Z% can not be faithfully represented on ¢2(Z?, C").
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Let us further decompose

Essential J—
spectrum 9] \ Zd =~ U Qj) Q] = Orblt(wj), CL)] S Q \ Zd
jeJ

Then for each j, C(Qj, M,,(C)) x Z? can be faithfully represented on ¢?(Z%,C™).

Theorem (cf. [Mantoiu, '02])
Let g; : C(Q2, M,,(C)) x Z% — C(84, M,,(C)) x Z%. Then for any
T € C(Q, M,(C)) x Z4,

Uess(T) = U U(Qj(T))

jeJ



Quantum
walks and

i Example — asymptotically periodic

algebras

Chris Bourne

Essential EXampIe

spectrum
We had Q ~Z U {0,...,It =1} U{0,...,I- — 1} and

Q\Z=1{0,...,I" —1}u{0,...,I" -1} =Q, UQ_.

As |Qi| = I* < 00, C(Qx, M,(C)) x Z = C(T, My=,,(C)) and

0ess(T) = | o( T (k) U o (T_(k)).
keT .

eigenvalues
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Symmetry index |
Suppose £1 ¢ 0ess(U) and T'UT = U* so
sic(U,T) = Tr (Tlge(v1)) = Index(Fy),  Fi € C(Q, My (C)) x Z°.
If F e C(Q, M,(C)) x Z% is Fredholm, ¢;(F) € C(£;) x Z¢ invertible for all j € J.
We further assume N
o\zt=| |9

j=1
Lemma
There is a function sgn : {1,..., N} — {£1} such that

N
Index(F) = Z sgn(j) Index(ﬁj).
j=1
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Symmetry index || — odd dimension

Given a component ; of Q\ Z¢ in odd dimensions, we can also consider the
‘Chern number’ of the invertible element ¢;(F) € C(€;, M,,(C)) x Z%.

Proposition

Suppose d =20+ 1, F € C(Q, M,(C)) x Z% is Fredholm and ¢;(F) in a ‘smooth’
subalgebra of C(€2;, M,,(C)) x Z4. Let P be an invariant and ergodic measure of
€2;. Then P-almost surely,

d
Index(Fj) = Chopy1(u) = Cg Y (~1)°(Tren ® Tryor) (H X0 (F)]).

PES

When [©;] < oo, Chgyy1(u) is an integral of a differential form on T2+,
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Example
index formuiss~ When d =1 and Q \ Z is finite, we recover a Nother—Toeplitz index formula:

Qp ={0,...,IF =1}, q(F1) € C(T, M,;+(C)) invertible and
-1
Index(Fy) = ﬂWind(det(qi(F))).
s
Supposing that —1 # 0ess(U),

si_(U,T) = QL (Wind( det(q; (F))) — Wind ( det(q,(F)))).

T
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Case U = ™1
Suppose H = H* and 'HI' = —H. If H is Fredholm, we can also define
Ind(H,T) = Tr (U|ker(rr)) = Index (§(1 - T)H(1+1))

Proposition

If H is Fredholm and || H|| < 1, then

Ind(H,T) = si, (7, T).

Proof. First note Ker(H) = Ker(e™ —1). Then

siy (e, 1) = Tr (Dlger(eimti—1y) = Tr (Clker(zr)) = Ind(H,T).
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Non-Fredholm indices and K-theory

Would also like ‘topological indices’ in the case +1 € gegs(U).
We assume U € B, a unital C*-algebra with a closed ideal By C B
(cf. K(H) C B(H)).
Lemma (B., '23)
IfT' e B, T'UT = U* and
1a(U) ¥ 1| /5, < 2.
Then there is a well-defined index siL(U,T") € Ky(By).

® Non-trivial indices also possible for non-chiral symmetric U (K (By)-index).
® Many of the previous results also extend to the abstract K-theoretic setting.’

® See also T. Natsume's talk and [Natsume—Nest, arXiv:2310.13094].
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Non-Fredholm indices and K-theory

Would also like ‘topological indices’ in the case +1 € gegs(U).
We assume U € B, a unital C*-algebra with a closed ideal By C B
(cf. K(H) C B(H)).
Lemma (B., '23)
IfT' e B, T'UT = U* and
1a(U) ¥ 1| /5, < 2.
Then there is a well-defined index siL(U,T") € Ky(By).

® Non-trivial indices also possible for non-chiral symmetric U (K (By)-index).
® Many of the previous results also extend to the abstract K-theoretic setting.’

® See also T. Natsume's talk and [Natsume—Nest, arXiv:2310.13094].

! Conditions apply.
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