Quantum walks and operator algebras

Chris Bourne

Quantum walks

Essential spectrum

Index formula

Spectral and topological properties of quantum walks

Chris Bourne
Joint with S. Richard and Y. Tanaka

Nagoya University, RIKEN iTHEMS

Himeji Conference on Partial Differential Equations 4 March 2024

Outline

- 1 Quantum walks and the chiral symmetry index,
- 2 The 'anisotropic algebra', crossed products and the essential spectrum,
- 3 Index formulas,
- 4 (Appendix) Miscellaneous extra topics (おまけ).

Quantum walks and operator algebras

Chris Bourne

Quantum walks

Essentia spectrun

Index formula

Quantum walks – a rough introduction

"Quantum analogue of random walk"

Discrete time step – unitary operator U on $\mathcal{H} = \ell^2(\mathbb{Z}^d, \mathbb{C}^n)$ with decomposition into a *shift* and *coin*,

$$U = \widetilde{S}C, \qquad \widetilde{S}, \ C \in \mathcal{U}[\ell^2(\mathbb{Z}^d, \mathbb{C}^n)],$$

$$\widetilde{S} \sim {\sf matrix} \ {\sf of} \ {\sf shift} \ {\sf operators}, \qquad \qquad C: \mathbb{Z}^d o \mathcal{U}(\mathbb{C}^n).$$

Studied from many perspectives (probability, quantum information theory, mathematical physics, ...)

Chris Bourne

Quantum walks

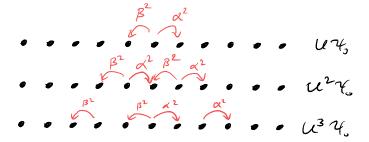
Essential

Index formula

Example – flip a coin and move left/right

Take $\mathcal{H}=\ell^2(\mathbb{Z},\mathbb{C}^2)$, initial state $\psi_0=\delta_0\otimes ({1\atop 0})$ and consider $U^n\psi_0$, where

$$U = \widetilde{S}C = \begin{pmatrix} S & 0 \\ 0 & S^* \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}, \qquad \alpha^2 + \beta^2 = 1.$$



Can define random variables using quantum measurement and superposition of states.

Quantum walks and operator algebras

Chris Bourne

Quantum walks

Essential spectrum

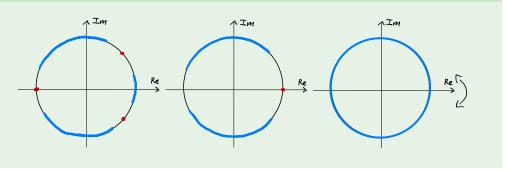
Index formul

Chiral symmetric unitaries

We say that U is chiral symmetric if there is a self-adjoint unitary Γ such that $\Gamma U\Gamma = U^*.$

The spectrum of chiral-symmetric $\it U$ is symmetric about the real axis.

Examples (Chiral-symmetric $\sigma(U)$)



Chris Bourne

Quantum walks

Essential spectrum

Index formul

Symmetry index [Cedzich et al. '18]

Recall that for $T \in \mathcal{B}(\mathcal{H})$

$$\sigma_{\mathrm{ess}}(T) = \{ \lambda \in \sigma(T) \mid T - \lambda \mathbf{1} \text{ not Fredholm} \}.$$

If U chiral symmetric and $\pm 1 \notin \sigma_{\rm ess}(U)$, can define the symmetry index,

$$\operatorname{si}_{\pm}(U,\Gamma) = \operatorname{Tr}\left(\Gamma|_{\operatorname{Ker}(U\mp1)}\right) \in \mathbb{Z}.$$

Lemma (Basic properties, [Cedzich et al. '18] [B. '23])

- \bullet $|\operatorname{si}_{\pm}(U,\Gamma)|$ gives a lower-bound on the number of 'bound states' of U at ± 1 .
- $2 \operatorname{si}_{\pm}(U,\Gamma)$ is locally constant in the norm-topology.
- 3 If $\{U_t\}_{t\in[0,1]}$ is a strongly-continuous path of chiral unitaries and $\{\phi(U_t)\}_{t\in[0,1]}\subset\mathcal{K}(\mathcal{H})$ norm-continuous for $\mathrm{supp}(\phi)$ in a neighbourhood of ± 1 , then $\mathrm{si}_\pm(U_t,\Gamma)$ constant.
- 4 If $U, \Gamma \in B$, a C^* -algebra, and $\pm 1 \notin \sigma_{ess}(U)$, there exists $F_{\pm} \in B$ Fredholm such that $\operatorname{si}_{\pm}(U, \Gamma) = \operatorname{Index}(F_{\pm})$.

Chris Bourne

Quantum walks

spectrum

Index formula

Given a quantum walk unitary $U \in \mathcal{U}(\ell^2(\mathbb{Z}^d,\mathbb{C}^n))$ would like to:

- **1** Compute $\sigma_{\rm ess}(U)$,
- 2 If $\pm 1 \notin \sigma_{ess}(U)$, find 'index formulas' for $si_{\pm}(U,\Gamma)$.

The anisotropic algebra

Understand $\sigma_{\mathrm{ess}}(U)$ by understanding the asymptotics of $C: \mathbb{Z}^d \to \mathcal{U}(\mathbb{C}^n)$.

Definition

The anisotropic algebra A is a separable and unital subalgebra of $L^{\infty}(\mathbb{Z}^d, M_n(\mathbb{C}))$ such that

- 1) If $a \in A$, then $\alpha_m(a)(x) = a(x+m) \in A$ for all $m \in \mathbb{Z}^d$,
- $C_0(\mathbb{Z}^d, M_n(\mathbb{C})) \subset A$,

By Gelfand–Naimark, $A \simeq C(\Omega, M_n(\mathbb{C}))$ with Ω a compactification of \mathbb{Z}^d .

Example – asymptotically periodic, d=1

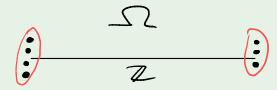
Example

Say $b: \mathbb{Z} \to M_n(\mathbb{C})$ is l-periodic, $l \in \mathbb{N}$, if b(x+l) = b(x) for all $x \in \mathbb{Z}$.

Fixing $l^+, l^- \in \mathbb{N}$, we consider functions $a: \mathbb{Z} \to M_n(\mathbb{C})$ such that there are l^\pm -periodic functions b^\pm with

$$\lim_{x \to \pm \infty} \|a(x) - b^{\pm}(x)\| = 0.$$

In this case $\Omega = \mathbb{Z} \cup \{0, ..., l^+ - 1\} \cup \{0, ..., l^- - 1\}$.



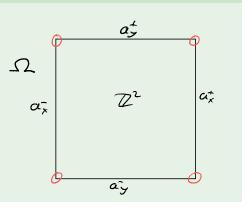
Example – Cartesian anisotropy, d=2

Example

Let $\mathbb{Z}^{\pm} = \mathbb{Z} \cup \{+\infty, -\infty\}$ and consider $a: \mathbb{Z}^2 \to M_n(\mathbb{C})$ that extend to $\widetilde{a}: (\mathbb{Z}^{\pm})^{\oplus 2} \to M_n(\mathbb{C}).$

That is, we have

$$\begin{split} a_x^\pm,\ a_y^\pm:\mathbb{Z}^\pm &\to M_n(\mathbb{C}),\\ a_x^\pm(y) &= \widetilde{a}(\pm\infty,y), \quad a_y^\pm(x) = \widetilde{a}(x,\pm\infty),\\ \text{and}\ \Omega &\simeq (\mathbb{Z}^\pm)^{\oplus 2}. \end{split}$$



Crossed product algebras

Coin $C \in A \subset L^{\infty}(\mathbb{Z}^d, M_n(\mathbb{C}))$, but $U = \widetilde{S}C$ also involves the shift operators,

$$U \in C(\Omega, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d = \overline{\left\{ \sum_{m \in \mathbb{Z}^d \text{ finite}} S^m a_m \ \middle| \ a_m \in A \right\}} \mathcal{B}^{[\ell^2(\mathbb{Z}^d, \mathbb{C}^n)]},$$

Because $C_0(\mathbb{Z}^d, M_n(\mathbb{C})) \subset A \simeq C(\Omega, M_n(\mathbb{C}))$, it is an ideal:

$$0 \to C_0(\mathbb{Z}^d, M_n(\mathbb{C})) \to C(\Omega, M_n(\mathbb{C})) \to C(\Omega \setminus \mathbb{Z}^d, M_n(\mathbb{C})) \to 0.$$

Using properties of crossed product algebras cf. [Williams, '07],

$$0 \to C_0(\mathbb{Z}^d, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d \to C(\Omega, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d \xrightarrow{q} C(\Omega \setminus \mathbb{Z}^d, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d \to 0$$
 also exact.

Quantum walks and operator algebras

Chris Bourne

Quantum

Essential spectrum

index formula

Crossed products and $\sigma_{\rm ess}(U)$

Using more properties of crossed product algebras,

$$C_0(\mathbb{Z}^d, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d \cong \mathcal{K}[\ell^2(\mathbb{Z}^d, \mathbb{C}^n)],$$

SO

$$0 \to \mathcal{K}(\mathcal{H}) \to C(\Omega, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d \xrightarrow{q} C(\Omega \setminus \mathbb{Z}^d, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d \to 0.$$

Because q is 'quotient by compacts', $\sigma_{ess}(U) = \sigma(q(U))$.

However, $C(\Omega \setminus \mathbb{Z}^d, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d$ can not be faithfully represented on $\ell^2(\mathbb{Z}^d, \mathbb{C}^n)$.

Boundary orbits and the essential spectrum

Let us further decompose

$$\Omega \setminus \mathbb{Z}^d \cong \bigcup_{j \in J} \Omega_j, \qquad \Omega_j = \overline{\operatorname{orbit}(\omega_j)}, \quad \omega_j \in \Omega \setminus \mathbb{Z}^d.$$

Then for each j, $C(\Omega_j, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d$ can be faithfully represented on $\ell^2(\mathbb{Z}^d, \mathbb{C}^n)$.

Theorem (cf. [Măntoiu, '02])

Let $q_j: C(\Omega, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d \to C(\Omega_j, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d$. Then for any $T \in C(\Omega, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d$,

$$\sigma_{\mathrm{ess}}(T) = \bigcup_{j \in J} \sigma(q_j(T))$$

Example – asymptotically periodic

Example

We had $\Omega \simeq \mathbb{Z} \cup \{0,\ldots,l^+-1\} \cup \{0,\ldots,l^--1\}$ and

$$\Omega \setminus \mathbb{Z} = \{0, \dots, l^+ - 1\} \cup \{0, \dots, l^- - 1\} =: \Omega_+ \cup \Omega_-.$$

As $|\Omega_{\pm}|=l^{\pm}<\infty$, $C(\Omega_{\pm},M_n(\mathbb{C}))\rtimes\mathbb{Z}\cong C(\mathbb{T},M_{l^{\pm}n}(\mathbb{C}))$ and

$$\sigma_{\mathrm{ess}}(T) = \bigcup_{k \in \mathbb{T}} \underbrace{\sigma(T_{+}(k)) \cup \sigma(T_{-}(k))}_{\text{eigenvalues}}.$$

Symmetry index I

Suppose $\pm 1 \notin \sigma_{\mathrm{ess}}(U)$ and $\Gamma U \Gamma = U^*$ so

$$\operatorname{si}_{\pm}(U,\Gamma) = \operatorname{Tr}\left(\Gamma|_{\operatorname{Ker}(U \mp 1)}\right) = \operatorname{Index}(F_{\pm}), \qquad F_{\pm} \in C(\Omega, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d.$$

If $F \in C(\Omega, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d$ is Fredholm, $q_j(F) \in C(\Omega_j) \rtimes \mathbb{Z}^d$ invertible for all $j \in J$.

We further assume

$$\Omega \setminus \mathbb{Z}^d \cong \bigsqcup_{j=1}^N \Omega_j.$$

Lemma

There is a function $\operatorname{sgn}:\{1,\ldots,N\}\to\{\pm 1\}$ such that

$$\operatorname{Index}(F) = \sum_{j=1}^{N} \operatorname{sgn}(j) \operatorname{Index}(\widetilde{F}_{j}).$$

Symmetry index II – odd dimension

Given a component Ω_j of $\Omega \setminus \mathbb{Z}^d$ in odd dimensions, we can also consider the 'Chern number' of the invertible element $q_j(F) \in C(\Omega_j, M_n(\mathbb{C})) \rtimes \mathbb{Z}^d$.

Proposition

Suppose d=2l+1, $F\in C(\Omega,M_n(\mathbb{C}))\rtimes \mathbb{Z}^d$ is Fredholm and $q_j(F)$ in a 'smooth' subalgebra of $C(\Omega_j,M_n(\mathbb{C}))\rtimes \mathbb{Z}^d$. Let \mathbf{P} be an invariant and ergodic measure of Ω_j . Then \mathbf{P} -almost surely,

$$\operatorname{Index}(\widetilde{F}_j) = \operatorname{Ch}_{2l+1}(u) = C_d \sum_{\rho \in S_d} (-1)^{\rho} (\operatorname{Tr}_{\mathbb{C}^n} \otimes \operatorname{Tr}_{\operatorname{vol}}) \Big(\prod_{j=1}^d q_j(F)^{-1} [X_{\rho(j)}, q_j(F)] \Big).$$

When $|\Omega_j| < \infty$, $\operatorname{Ch}_{2l+1}(u)$ is an integral of a differential form on \mathbb{T}^{2l+1} .

Example – asymptotically periodic, d=1

Example

When d=1 and $\Omega \setminus \mathbb{Z}$ is finite, we recover a Nöther–Toeplitz index formula:

$$\Omega_{\pm}=\{0,\ldots,l^{\pm}-1\},\ q(F_{\pm})\in C(\mathbb{T},M_{nl^{\pm}}(\mathbb{C}))$$
 invertible and

$$\operatorname{Index}(\widetilde{F}_{\pm}) = \frac{-1}{2\pi i} \operatorname{Wind}(\det(q_{\pm}(F))).$$

Supposing that $-1 \neq \sigma_{ess}(U)$,

$$\operatorname{si}_{-}(U,\Gamma) = \frac{1}{2\pi i} \Big(\operatorname{Wind} \big(\det(q_{+}(F)) \big) - \operatorname{Wind} \big(\det(q_{-}(F)) \big) \Big).$$

References

- 1 C. Bourne. *Index theory of chiral unitaries and split-step quantum walks.* SIGMA Symmetry Integrability Geom. Methods Appl., **19** (2023), Paper No. 053.
- 2 C. Cedzich, T. Geib, F. A. Grünbaum, C. Stahl, L. Velázquez, A. H. Werner, and R. F. Werner. The topological classification of one-dimensional symmetric quantum walks. Ann. Henri Poincaré, 19 (2018), no. 2, 325–383.
- 3 M. Măntoiu. C^* -algebras, dynamical systems at infinity and the essential spectrum of generalized Schrödinger operators. J. Reine Angew. Math., **550** (2002), 211–229.
- **4** D. P. Williams, *Crossed products of* C^* -algebras, American Mathematical Society, Providence, RI (2007).

Suppose $H=H^*$ and $\Gamma H\Gamma=-H.$ If H is Fredholm, we can also define

$$\operatorname{Ind}(H,\Gamma) = \operatorname{Tr}\left(\Gamma|_{\operatorname{Ker}(H)}\right) = \operatorname{Index}\left(\frac{1}{2}(1-\Gamma)H\frac{1}{2}(1+\Gamma)\right)$$

Proposition

If H is Fredholm and $||H|| \leq 1$, then

$$\operatorname{Ind}(H,\Gamma) = \operatorname{si}_{+}(e^{i\pi H},\Gamma).$$

Proof. First note $Ker(H) = Ker(e^{i\pi H} - 1)$. Then

$$\mathrm{si}_+(e^{i\pi H},\Gamma)=\mathrm{Tr}\left(\Gamma|_{\mathrm{Ker}(e^{i\pi H}-\mathbf{1})}\right)=\mathrm{Tr}\left(\Gamma|_{\mathrm{Ker}(H)}\right)=\mathrm{Ind}(H,\Gamma).$$

おまけ

Non-Fredholm indices and K-theory

Would also like 'topological indices' in the case $\pm 1 \in \sigma_{ess}(U)$.

We assume $U \in B$, a unital C^* -algebra with a closed ideal $B_0 \subset B$ (cf. $\mathcal{K}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$).

Lemma (B., '23)

If
$$\Gamma \in B$$
, $\Gamma U\Gamma = U^*$ and

$$||q(U) \mp \mathbf{1}||_{B/B_0} < 2.$$

Then there is a well-defined index $\operatorname{si}_{\pm}(U,\Gamma) \in K_0(B_0)$.

- Non-trivial indices also possible for non-chiral symmetric U ($K_1(B_0)$ -index).
- Many of the previous results also extend to the abstract K-theoretic setting.¹
- See also T. Natsume's talk and [Natsume–Nest, arXiv:2310.13094].

Non-Fredholm indices and K-theory

Would also like 'topological indices' in the case $\pm 1 \in \sigma_{ess}(U)$.

We assume $U \in B$, a unital C^* -algebra with a closed ideal $B_0 \subset B$ (cf. $\mathcal{K}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$).

Lemma (B., '23)

If
$$\Gamma \in B$$
, $\Gamma U\Gamma = U^*$ and

$$||q(U) \mp \mathbf{1}||_{B/B_0} < 2.$$

Then there is a well-defined index $\operatorname{si}_{\pm}(U,\Gamma) \in K_0(B_0)$.

- Non-trivial indices also possible for non-chiral symmetric $U(K_1(B_0))$ -index).
- Many of the previous results also extend to the abstract K-theoretic setting.¹
- See also T. Natsume's talk and [Natsume–Nest, arXiv:2310.13094].

¹Conditions apply.