A depth-dependent stability estimate in an iterative method for solving a Cauchy problem for the Laplace equation

Akari Ishida

Graduate School of Mathematics, Nagoya University

March 5, 2024

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
●0000	0000	0000000	0000000

Introduction

Landweber iteration

Bastay-Kozlov-Turesson iteration

Main theorem

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	0000000	0000000

$$\begin{split} &\Omega_*: \text{bounded domain in } \mathbb{R}^2 \\ &\partial\Omega_* = \Gamma_0 \cup \Gamma_* \text{ (}\Gamma_0, \ \Gamma_*: \text{closed, disjoint).} \end{split}$$

 $\begin{cases} \Delta u = 0 & \text{in } \Omega_*, \\ u = \varphi & \text{on } \Gamma_0, \\ \frac{\partial u}{\partial v} = \psi & \text{on } \Gamma_0. \end{cases}$

v: outward unit vector normal of $\partial \Omega_*$.

In general, for given φ and ψ , there does not always exist a solution u to (1.1) in Ω_* .

We now assume that there exists the solution u to (1.1) in Ω_* . Then, we consider a stability of an approximate solution obtained by the iterative procedure for φ and ψ .

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	0000000	0000000

$$\begin{split} &\Omega_*: \text{bounded domain in } \mathbb{R}^2 \\ &\partial\Omega_* = \Gamma_0 \cup \Gamma_* \ (\Gamma_0, \ \Gamma_*: \text{closed, disjoint}). \end{split}$$

$$\begin{cases} \Delta u = 0 & \text{in } \Omega_*, \\ u = \varphi & \text{on } \Gamma_0, \\ \frac{\partial u}{\partial v} = \psi & \text{on } \Gamma_0. \end{cases}$$

(1.1)

v: outward unit vector normal of $\partial \Omega_*$.

Related works

Bastay-Kozlov-Turesson (2001)

- one-step stationary iterative method
- minimal error method

elliptic: Johansson (2004, 2006) ...

parabolic: Chapko-Johansson-Vavrychuk (2013), Johansson (2006)

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	0000000	0000000

In the Bastay-Kozlov-Turesson iteration, we construct a sequence of approximate solutions to (1.1) by solving boundary value problems repeatedly.

- If we would like to construct the solution to (1.1) in Ω_* , we need to solve the corresponding boundary value problems in the whole of domain Ω_* .
- If we would like to construct the solution to (1.1) in $\Omega^*(\subset \Omega_*)$ near Γ_0 , we can also consider the boundary value problems only in Ω satisfying $\Omega^* \subset \Omega \subset \Omega_*$. Then, we expect that we can construct approximate solutions more stably when we choose smaller domain Ω .

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	0000000	0000000

In the Bastay-Kozlov-Turesson iteration, we construct a sequence of approximate solutions to (1.1) by solving boundary value problems repeatedly.

- If we would like to construct the solution to (1.1) in Ω_{*} , we need to solve the corresponding boundary value problems in the whole of domain Ω_{*} .
- If we would like to construct the solution to (1.1) in $\Omega^*(\subset \Omega_*)$ near Γ_0 , we can also consider the boundary value problems only in Ω satisfying $\Omega^* \subset \Omega \subset \Omega_*$. Then, we expect that we can construct approximate solutions more stably when we choose smaller domain Ω .

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	●000	0000000	0000000

Introduction

Landweber iteration

Bastay-Kozlov-Turesson iteration

Main theorem

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	0000000	0000000

X, Y: Hilbert space. $K : X \rightarrow Y$: linear, compact, injective.

- Problem For given $y \in Y$, we find $x \in X$ satisfying Kx = y.

Let a > 0 and Kx = y. K^* : adjoint operator to K. I: identity operator. Landweber iteration (z: initial data)

$$x^{(0)} = z, \quad x^{(m)} = (I - aK^*K)x^{(m-1)} + aK^*y.$$
 (2.1)

By solving the recurrence relation (2.1), we obtain

$$x^{(m)} = \widetilde{R_m} y, \text{ where } \widetilde{R_m} y = (I - aK^*K)^m z + a\sum_{k=0}^{m-1} (I - aK^*K)^k K^* y.$$
(2.2)

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	000000	0000000

$$x^{(0)} = z, \quad x^{(m)} = (I - aK^*K)x^{(m-1)} + aK^*y.$$
 (2.1)

$$x^{(m)} = \widetilde{R}_m y$$
, where $\widetilde{R}_m y = (I - aK^*K)^m z + a\sum_{k=0}^{m-1} (I - aK^*K)^k K^* y.$ (2.2)

 $||K||_{\mathcal{L}}$ denotes the operator norm.

Theorem 1
Let
$$0 < a < \frac{2}{\|K\|_{\mathcal{L}}^2}$$
 and $z \in X$. If $Kx^0 = y^0$, then
 $\|\widetilde{R}_m y^0 - x^0\|_X \to 0$ as $m \to \infty$.

Theorem 2 Let $0 < a < \frac{2}{\|K\|_{L}^{2}}$, $\delta > 0$ and $z \in X$. Moreover, we choose $m(\delta) > 0$ such that

$$\lim_{\delta \to +0} \delta^2 m(\delta) = 0, \quad \lim_{\delta \to +0} m(\delta) = \infty.$$

For y^{δ} with $||y^{\delta} - y^{0}||_{Y} \leq \delta$, if $Kx^{0} = y^{0}$, then

$$\lim_{\delta\to+0}\|\widetilde{R}_{m(\delta)}y^{\delta}-x^{0}\|_{\chi}=0.$$

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	000000	0000000

Theorem 2 Let $0 < a < \frac{2}{\|K\|_{L}^{2}}, \ \delta > 0$ and $z \in X$. Moreover, we choose $m(\delta) > 0$ such that $\lim_{\delta \to +0} \delta^{2} m(\delta) = 0, \quad \lim_{\delta \to +0} m(\delta) = \infty.$ For y^{δ} with $\|y^{\delta} - y^{0}\|_{Y} \le \delta$, if $Kx^{0} = y^{0}$, then $\lim_{\delta \to +0} \|\widetilde{R}_{m(\delta)}y^{\delta} - x^{0}\|_{X} = 0.$

$$\begin{split} \|\widetilde{R}_{m}y^{\delta} - x^{0}\|_{X} &\leq \|\widetilde{R}_{m}y^{\delta} - \widetilde{R}_{m}y^{0}\|_{X} + \|\widetilde{R}_{m}y^{0} - x^{0}\|_{X} \\ \text{error from:} \quad \text{observation } y^{\delta} - y^{0} \quad \text{iteration} \\ m \to \infty: \quad \to \infty \qquad \to 0 \end{split}$$

Thus, we have to choose *m* depending on δ .

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	●000000	0000000

Introduction

Landweber iteration

Bastay-Kozlov-Turesson iteration

Main theorem

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	000000	0000000

At each step, we solve the following boundary value problem

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ u = \eta & \text{on } \Gamma_1, \\ \frac{\partial u}{\partial v} = \psi & \text{on } \Gamma_0, \end{cases}$$

(3.1)

and the adjoint problem

$$\begin{cases} \Delta v = 0 & \text{in } \Omega, \\ v = 0 & \text{on } \Gamma_1, \\ \frac{\partial v}{\partial v} = \zeta & \text{on } \Gamma_0. \end{cases}$$
(3.2)

Problems (3.1) and (3.2) have unique solutions, respectively.

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	000000	0000000

- Choose an arbitrary function $\eta^{(0)} \in L^2(\Gamma_1)$.
- The first approximation $u^{(0)}$ to the solution u is obtained by solving the problem (3.1) with $\eta = \eta^{(0)}$ on Γ_1 .

 $\begin{cases} \Delta u^{(0)} = 0 & \text{in } \Omega, \\ u^{(0)} = \eta^{(0)} & \text{on } \Gamma_1, \\ \frac{\partial u^{(0)}}{\partial v} = \psi & \text{on } \Gamma_0. \end{cases}$

- Then, we find the auxiliary function $v^{(0)}$, which is given by the solution to the problem (3.2) with $\zeta = \zeta^{(0)}$, where $\zeta^{(0)} = u^{(0)} - \varphi$ on Γ_0 .

$$\begin{cases} \Delta v^{(0)} = 0 & \text{in } \Omega, \\ v^{(0)} = 0 & \text{on } \Gamma_1, \\ \frac{\partial v^{(0)}}{\partial v} = u^{(0)} - \varphi & \text{on } \Gamma_0. \end{cases}$$

00000 0000 00000 000000 000000	Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
	00000	0000	000000	0000000

- When the solutions $u^{(\ell-1)}$ and $v^{(\ell-1)}$ have been constructed, the approximation $u^{(\ell)}$ is the solution to (3.1) with data $\eta = \eta^{(\ell)}$ on Γ_1 , where

$$\eta^{(\ell)} = u^{(\ell-1)} + \gamma \frac{\partial v^{(\ell-1)}}{\partial v}$$

and γ is a fixed positive number.

$$\begin{cases} \Delta u^{(\ell)} = 0 & \text{ in } \Omega, \\ u^{(\ell)} = \eta^{(\ell)} & \text{ on } \Gamma_1, \\ \frac{\partial u^{(\ell)}}{\partial v} = \psi & \text{ on } \Gamma_0. \end{cases}$$

- The auxiliary function $v^{(\ell)}$ is the solution to (3.2) with data $\zeta = \zeta^{(\ell)}$, where $\zeta^{(\ell)} = u^{(\ell)} - \varphi$ on Γ_0 .

$$\begin{cases} \Delta v^{(\ell)} = 0 & \text{ in } \Omega, \\ v^{(\ell)} = 0 & \text{ on } \Gamma_1, \\ \frac{\partial v^{(\ell)}}{\partial v} = u^{(\ell)} - \varphi & \text{ on } \Gamma_0. \end{cases}$$

Introduction 00000	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem

Definition 3 We introduce an operator $K : L^2(\Gamma_1) \to L^2(\Gamma_0)$ through

$$K\eta = z_1|_{\Gamma_0}$$
 for $\eta \in L^2(\Gamma_1)$,

where z_1 is the solution to (3.1) with $\psi = 0$.

Similarly, we define the operator $K_1 : L^2(\Gamma_0) \to L^2(\Gamma_0)$ by

$$K_1\psi = z_2|_{\Gamma_0}$$
 for $\psi \in L^2(\Gamma_0)$,

where z_2 is the solution to (3.1) with $\eta = 0$.

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ u = \eta & \text{on } \Gamma_1, \\ \frac{\partial u}{\partial v} = \psi & \text{on } \Gamma_0, \end{cases}$$
(3.1)

Introduction 00000	Landweber iteration 0000	Bastay-Kozlov-Turesson iteration	Main theorem

$$K\eta = z_1|_{\Gamma_0}$$
, where z_1 is the solution to (3.1) with $\psi = 0$,
 $K_1\psi = z_2|_{\Gamma_0}$, where z_2 is the solution to (3.1) with $\eta = 0$.

- K: compact, injective. K₁: compact.
- Solving (1.1) is equivalent to solving the following equation

$$K\eta = \varphi - K_1 \psi. \tag{3.3}$$

If η is a solution to (3.3), then the solution to (3.1) satisfies $u = \varphi$ on Γ_0 and thus solves (1.1). Conversely, if u solves (1.1), then $\eta = u|_{\Gamma_1}$ is a solution to (3.3).

- The adjoint $K^* : L^2(\Gamma_0) \to L^2(\Gamma_1)$ to the operator K is given by

$$K^*\zeta = -\left.\left(\frac{\partial v}{\partial v}\right)\right|_{\Gamma_1}$$
 for $\zeta \in L^2(\Gamma_0)$,

where v is the solution to (3.2).

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	000000	0000000

$$K\eta = \varphi - K_1 \psi. \tag{3.3}$$

Moreover, from the algorithm, we have

$$\eta^{(\ell)} = (I - \gamma K^* K) \eta^{(\ell-1)} + \gamma K^* (\varphi - K_1 \psi).$$
(3.4)

Since (3.4) is the Landweber iteration for (3.3), from Theorem 1, we have

$$\|\eta^{(\ell)} - \eta\|_{L^2(\Gamma_1)} \to 0 \text{ as } \ell \to \infty.$$

Furthermore, by the well-posedness of (3.1), we obtain

$$\|u^{(\ell)}-u\|_{L^2(\Omega)} \leq C' \|\eta^{(\ell)}-\eta\|_{L^2(\Gamma_1)} \to 0 \quad \text{as } \ell \to \infty.$$

Theorem 4 (Bastay-Kozlov-Turesson, 2001) Let $u \in L^2(\Omega)$ be the solution to (1.1). We suppose that $0 < \gamma < \frac{2}{\|K\|_{L^2(\Gamma_1) \to L^2(\Gamma_0)}^2}$. Let $u^{(\ell)}$ be the ℓ -th approximate solution. Then, for every initial data function $\eta^{(0)} \in L^2(\Gamma_1)$,

$$\|u^{(\ell)}-u\|_{L^2(\Omega)} \to 0 \quad as \ \ell \to \infty.$$

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	0000000	000000

Introduction

Landweber iteration

Bastay-Kozlov-Turesson iteration

Main theorem

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	0000000	000000

"We choose the smaller domain where we consider the boundary value problems, we construct them more stably."

In order to show this, we consider the following situation.

Let $0 < \rho_* \le \rho \le \rho^* < 1$. $\Omega_* = \{x \in \mathbb{R}^2 \mid \rho_* < |x| < 1\}, \ \Omega^* = \{x \in \mathbb{R}^2 \mid \rho^* < |x| < 1\}, \ \Omega = \{x \in \mathbb{R}^2 \mid \rho < |x| < 1\}, \ \Gamma_0 = \{x \in \mathbb{R}^2 \mid |x| = 1\}, \ \Gamma_* = \{x \in \mathbb{R}^2 \mid |x| = \rho_*\}, \ \Gamma_1 = \{x \in \mathbb{R}^2 \mid |x| = \rho\}.$

00000 0000	00	000000	000000

Theorem 5 (I.)

 $(\sharp) \left(\begin{array}{l} \mbox{Given positive numbers } M_0 \mbox{ and } M. \\ We \ suppose \ that \ \varphi \ and \ \psi \ are \ real-valued \ functions \\ with \ \|\varphi\|^2_{L^2(\Gamma_0)} + \|\psi\|^2_{L^2(\Gamma_0)} \leq M_0^2. \\ We \ assume \ that \ there \ exists \ the \ solution \ u \\ to \ the \ Cauchy \ problem \ (1.1) \ in \ \Omega_* \ and \ its \ trace \ on \ \Gamma_* \ is \ in \ L^2. \\ We \ suppose \ that \ \|u\|_{L^2(\Gamma_*)} \leq M. \end{array} \right)$

Let $u^{(\ell)}$ be an approximate solution obtained by the iterative procedure with $\eta^{(0)} = 0$ and $\gamma = \rho$. Then, for $\ell \ge 2$ and $\rho \in [\rho_*, \rho^*]$, the following estimate holds:

$$\|u^{(\ell)} - u\|_{L^{2}(\Omega^{*})}^{2} \leq C \left(\frac{\log \ell}{\ell}\right)^{\min\left\{\frac{\log (\beta^{*}/\rho_{*})}{\log(1/\rho)}, 1\right\}},$$
(4.1)

where a positive constant C depends only on M_0 , M, ρ_* and ρ^* .

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem
00000	0000	0000000	0000000

$$\|u^{(\ell)} - u\|_{L^{2}(\Omega^{*})}^{2} \leq C \left(\frac{\log \ell}{\ell}\right)^{\min\left\{\frac{\log (\rho^{*}/\rho_{*})}{\log(1/\rho)}, 1\right\}}.$$
(4.1)

Remark 6 We have

$$\min\left\{\frac{\log\left(\rho^*/\rho_*\right)}{\log(1/\rho)}, 1\right\} = \begin{cases} \frac{\log\left(\rho^*/\rho_*\right)}{\log(1/\rho)} & \text{for } \rho_* \le \rho < \frac{\rho_*}{\rho^*}, \\ 1 & \text{for } \frac{\rho_*}{\rho^*} \le \rho \le \rho^*. \end{cases}$$

There exists no ρ satisfying $\frac{\rho_*}{\rho^*} \leq \rho \leq \rho^*$ in the case where $\sqrt{\rho_*} > \rho^*$. Namely, in this case, we have

$$\|u^{(\ell)} - u\|_{L^2(\Omega^*)}^2 \le C\left(\frac{\log \ell}{\ell}\right)^{\frac{\log(\rho^*/\rho_*)}{\log(1/\rho)}}$$

for any ρ .

Introduction 00000	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem 0000●00

$$\|u^{(\ell)} - u\|_{L^{2}(\Omega^{*})}^{2} \leq C \left(\frac{\log \ell}{\ell}\right)^{\min\left\{\frac{\log \left(\rho^{*}/\rho^{*}\right)}{\log(1/\rho)}, 1\right\}}.$$
(4.1)

The larger ρ we choose, the larger the power $\frac{\log{(\rho^*/\rho_*)}}{\log(1/\rho)}$ on the right-hand side

of (4.1) is. It means that we have the better stability as we choose ρ larger. Moreover, with regard to the optimality of (4.1), we have the following theorem.

Theorem 7 (l.)

Let $\varepsilon > 0$ be given. Under the assumptions in Theorem 5, there exists no positive constant \hat{C} depending only on M_0 , M, ρ_* and ρ^* such that

$$\|u^{(\ell)} - u\|_{L^2(\Omega^*)}^2 \le \widehat{C} \left(\frac{\log \ell}{\ell}\right)^{\frac{\log(\delta^*/\rho_*)}{\log(1/\rho)} + \varepsilon}$$
(4.2)

holds for any $\ell \geq 2$ and $\rho \in [\rho_*, \rho^*]$.

Introduction	Landweber iteration	Bastay-Kozlov-Turesson iteration	Main theorem 00000●0

Since the Landweber iteration works with inexact data, the Bastay-Kozlov-Turesson iteration also works.

We next consider the case where we know only approximations φ^{δ} and ψ^{δ} :

$$\|\varphi^{\delta} - \varphi\|_{L^{2}(\Gamma_{0})} \leq \delta, \quad \|\psi^{\delta} - \psi\|_{L^{2}(\Gamma_{0})} \leq \delta.$$

$$(4.2)$$

Let $u^{(\ell),\delta}$ be an approximation obtained by the iterative procedure with $\eta^{(0)} = 0$ and $\gamma = \rho$ for φ^{δ} and ψ^{δ} .

Since we have

$$\begin{aligned} \|u^{(\ell),\delta} - u\|_{L^{2}(\Omega^{*})} &\leq \|u^{(\ell),\delta} - u^{(\ell)}\|_{L^{2}(\Omega^{*})} + \|u^{(\ell)} - u\|_{L^{2}(\Omega^{*})} \\ &\leq \widetilde{C}\sqrt{\ell}\,\delta + \|u^{(\ell)} - u\|_{L^{2}(\Omega^{*})}, \\ &\ell \to \infty; \quad \xrightarrow{\to \infty} \quad \xrightarrow{\to 0} \quad (\because \text{ Theorem 5}) \end{aligned}$$

we have to choose ℓ well.

Introduction 00000	Landweber iteration 0000	Bastay-Kozlov-Turesson iteration	Main theorem 000000●

Theorem 8 (I.)

Let the assumption (#) in Theorem 5 holds. We suppose that φ^{δ} and ψ^{δ} are real-valued functions with

$$\|\varphi^{\delta} - \varphi\|_{L^{2}(\Gamma_{0})} \leq \delta, \quad \|\psi^{\delta} - \psi\|_{L^{2}(\Gamma_{0})} \leq \delta.$$

$$(4.3)$$

Let $u^{(\ell),\delta}$ be an approximation obtained by the iterative procedure with $\eta^{(0)} = 0$ and $\gamma = \rho$ for Cauchy data φ^{δ} and ψ^{δ} . Then, for $0 < \delta \leq 1/e^3$ and $\rho \in [\rho_*, \rho^*]$, we have

$$\|u^{(\ell(\delta,\rho)),\delta} - u\|_{L^{2}(\Omega^{*})}^{2} \leq \widetilde{C} \begin{cases} \left(\delta^{2}\log\frac{1}{\delta}\right)^{\frac{\log(\rho^{*}/\rho_{*})}{\log(1/\rho) + \log(\rho^{*}/\rho_{*})}} & \text{for } \rho_{*} \leq \rho < \frac{\rho_{*}}{\rho^{*}}, \\ \left(\delta^{2}\log\frac{1}{\delta}\right)^{\frac{1}{2}} & \text{for } \frac{\rho_{*}}{\rho^{*}} \leq \rho \leq \rho^{*}, \end{cases}$$

$$(4.4)$$

where $\ell(\delta, \rho)$ is the minimum integer satisfying $\ell(\delta, \rho) \ge \ell_0(\delta, \rho)$ with

$$\ell_0(\delta,\rho) := \begin{cases} \left(\frac{1}{\delta}\right)^{\frac{2\log(1/\rho)}{\log(1/\rho) + \log(\rho^*/\rho_*)}} \left(\log\frac{1}{\delta}\right)^{\frac{\log(\rho^*/\rho_*)}{\log(1/\rho) + \log(\rho^*/\rho_*)}} & \text{for } \rho_* \le \rho < \frac{\rho_*}{\rho^*}, \\ \frac{1}{\delta} \left(\log\frac{1}{\delta}\right)^{\frac{1}{2}} & \text{for } \frac{\rho_*}{\rho^*} \le \rho \le \rho^*, \end{cases}$$

and a positive constant \tilde{C} depends only on M_0 , M, ρ_* and ρ^* .

Outline of the proof

Theorem 5 (I.)

(#) $\begin{cases} \text{Given positive numbers } M_0 \text{ and } M. \\ We \text{ suppose that } \varphi \text{ and } \psi \text{ are real-valued functions} \\ \text{with } \|\varphi\|_{L^2(\Gamma_0)}^2 + \|\psi\|_{L^2(\Gamma_0)}^2 \leq M_0^2. \\ We \text{ assume that there exists the solution } u \\ \text{to the Cauchy problem (1.1) in } \Omega_* \text{ and its trace on } \Gamma_* \text{ is in } L^2. \\ We \text{ suppose that } \|u\|_{L^2(\Gamma_*)} \leq M. \end{cases}$

Let $u^{(\ell)}$ be an approximate solution obtained by the iterative procedure with $\eta^{(0)} = 0$ and $\gamma = \rho$. Then, for $\ell \ge 2$ and $\rho \in [\rho_*, \rho^*]$, the following estimate holds:

$$\|u^{(\ell)} - u\|_{L^{2}(\Omega^{*})}^{2} \leq C \left(\frac{\log \ell}{\ell}\right)^{\min\left\{\frac{\log (\rho^{*}(\rho_{*})}{\log(1/\rho)}, 1\right\}},$$
(4.1)

where a positive constant C depends only on M_0 , M, ρ_* and ρ^* .

$$\|\varphi\|_{L^{2}(\Gamma_{0})}^{2} + \|\psi\|_{L^{2}(\Gamma_{0})}^{2} \leq M_{0}^{2}, \quad \|u\|_{L^{2}(\Gamma_{*})} \leq M.$$

$$\|u^{(\ell)} - u\|_{L^{2}(\Omega^{*})}^{2} \leq C \left(\frac{\log \ell}{\ell}\right)^{\min\left\{\frac{\log(\rho^{*}/\rho_{*})}{\log(1/\rho)}, 1\right\}}.$$
(4.1)

$$\|u^{(\ell)} - u\|_{L^2(\Omega_*)}^2 \le 8C_1(I_1 + I_2), \tag{5.1}$$

where

$$I_{1} := \sum_{k=1}^{\infty} \left\{ 1 - \frac{4}{(\rho^{k} + \rho^{-k})^{2}} \right\}^{2\ell} (\rho^{*})^{-2k+2} \left| \frac{\varphi_{k}}{2} - \frac{\psi_{k}}{2k} \right|^{2}$$

and

$$I_2 := \sum_{k=1}^{\infty} \left\{ 1 - \frac{4}{(\rho^k + \rho^{-k})^2} \right\}^{2\ell} \left| \frac{\varphi_k}{2} + \frac{\psi_k}{2k} \right|^2 \rho^{2k}.$$

$$\begin{split} \|\varphi\|_{L^{2}(\Gamma_{0})}^{2} + \|\psi\|_{L^{2}(\Gamma_{0})}^{2} \leq M_{0}^{2}, \quad \|u\|_{L^{2}(\Gamma_{*})} \leq M. \\ I_{1} := \sum_{k=1}^{\infty} \left\{ 1 - \frac{4}{(\rho^{k} + \rho^{-k})^{2}} \right\}^{2\ell} (\rho^{*})^{-2k+2} \left| \frac{\varphi_{k}}{2} - \frac{\psi_{k}}{2k} \right|^{2}. \end{split}$$

lemma 9 If real-valued functions φ and ψ satisfy $\|\varphi\|_{L^2(\Gamma_0)}^2 + \|\psi\|_{L^2(\Gamma_0)}^2 \leq M_0^2$, then we have

$$\sum_{k=1}^{\infty} \left| \frac{\varphi_k}{2} \pm \frac{\psi_k}{2k} \right|^2 \le \frac{M_0^2}{8\pi} =: \frac{1}{2} \widetilde{M_0}^2.$$
(5.2)

11 11

. . .

If real-valued functions φ and ψ satisfy $||u||_{L^2(\Gamma_*)}^2 \leq M^2$, then we have

$$\sum_{k=1}^{\infty} \left| \frac{\varphi_k}{2} - \frac{\psi_k}{2k} \right|^2 \rho_*^{-2k} \le \frac{M^2}{2\pi\rho_*} + \widetilde{M}_0^2 =: \widetilde{M}^2.$$
(5.3)

$$\sum_{k=1}^{\infty} \left| \frac{\varphi_k}{2} \pm \frac{\psi_k}{2k} \right|^2 \le \frac{M_0^2}{8\pi} =: \frac{1}{2} \widetilde{M_0}^2.$$
(5.2)

$$\sum_{k=1}^{\infty} \left| \frac{\varphi_k}{2} - \frac{\psi_k}{2k} \right|^2 \rho_*^{-2k} \le \frac{M^2}{2\pi\rho_*} + \widetilde{M}_0^2 =: \widetilde{M}^2.$$
(5.3)

$$I_1 := \sum_{k=1}^{\infty} \left\{ 1 - \frac{4}{(\rho^k + \rho^{-k})^2} \right\}^{2\ell} (\rho^*)^{-2k+2} \left| \frac{\varphi_k}{2} - \frac{\psi_k}{2k} \right|^2.$$

Let $0 < \lambda < \widetilde{M}$ be given. Let N be the minimum integer satisfying $\left(\frac{\rho_*}{\rho^*}\right)^N \widetilde{M} \leq \lambda$, namely $N - 1 < \frac{\log(\lambda/\widetilde{M})}{\log(\rho_*/\rho^*)} \leq N$.

We now divide I_1 into two parts:

$$I_{1} = \sum_{k=1}^{N-1} \left\{ 1 - \frac{4}{(\rho^{k} + \rho^{-k})^{2}} \right\}^{2\ell} (\rho^{*})^{-2k+2} \left| \frac{\varphi_{k}}{2} - \frac{\psi_{k}}{2k} \right|^{2} + \sum_{k=N}^{\infty} \left\{ 1 - \frac{4}{(\rho^{k} + \rho^{-k})^{2}} \right\}^{2\ell} (\rho^{*})^{-2k+2} \left| \frac{\varphi_{k}}{2} - \frac{\psi_{k}}{2k} \right|^{2}.$$

$$\sum_{k=1}^{\infty} \left| \frac{\varphi_k}{2} \pm \frac{\psi_k}{2k} \right|^2 \le \frac{M_0^2}{8\pi} =: \frac{1}{2} \widetilde{M_0}^2.$$
 (5.2)

$$\sum_{k=1}^{\infty} \left| \frac{\varphi_k}{2} - \frac{\psi_k}{2k} \right|^2 \rho_*^{-2k} \le \frac{M^2}{2\pi\rho_*} + \widetilde{M}_0^2 =: \widetilde{M}^2.$$
(5.3)

$$I_1 := \sum_{k=1}^{\infty} \left\{ 1 - \frac{4}{(\rho^k + \rho^{-k})^2} \right\}^{2\ell} (\rho^*)^{-2k+2} \left| \frac{\varphi_k}{2} - \frac{\psi_k}{2k} \right|^2.$$

Let $0 < \lambda < \widetilde{M}$ be given. Let N be the minimum integer satisfying $\left(\frac{\rho_*}{\rho^*}\right)^N \widetilde{M} \leq \lambda$, namely $N - 1 < \frac{\log(\lambda/\widetilde{M})}{\log(\rho_*/\rho^*)} \leq N$.

We now divide I_1 into two parts:

$$I_{1} = \sum_{k=1}^{N-1} \left\{ 1 - \frac{4}{(\rho^{k} + \rho^{-k})^{2}} \right\}^{2\ell} (\rho^{*})^{-2k+2} \left| \frac{\varphi_{k}}{2} - \frac{\psi_{k}}{2k} \right|^{2} + \sum_{k=N}^{\infty} \left\{ 1 - \frac{4}{(\rho^{k} + \rho^{-k})^{2}} \right\}^{2\ell} (\rho^{*})^{-2k+2} \left| \frac{\varphi_{k}}{2} - \frac{\psi_{k}}{2k} \right|^{2}.$$

We obtain

$$I_{1} \leq C_{1}\lambda^{-\mu} \left(\frac{e^{a}\lambda^{-b} - e^{-a}\lambda^{b}}{e^{a}\lambda^{-b} + e^{-a}\lambda^{b}}\right)^{4\ell} + \lambda^{2} =: F(\lambda),$$
(5.4)

where

$$\begin{split} C_1 &= \frac{1}{2} \widetilde{\mathcal{M}_0}^2 \left(\frac{1}{\rho^*}\right)^{\frac{2\log \tilde{\mathcal{M}}}{\log(\rho^*/\rho_*)}}, \quad \mu = \frac{2\log(1/\rho^*)}{\log(\rho^*/\rho_*)} > 0, \\ b &= \frac{\log(1/\rho)}{\log(\rho^*/\rho_*)} > 0, \quad a = b\log \widetilde{\mathcal{M}}. \end{split}$$

Now, let us choose λ such that $F(\lambda)$ is as small as possible. We choose λ_0 such that

$$\left(\frac{e^a\lambda_0^{-b}-e^{-a}\lambda_0^b}{e^a\lambda_0^{-b}+e^{-a}\lambda_0^b}\right)^{4\ell}=\ell^{-\omega}.$$

that is, we define

$$\lambda_0 = \left\{ \frac{e^{2a} \left(1 - \ell^{-\frac{\omega}{4\ell}} \right)}{1 + \ell^{-\frac{\omega}{4\ell}}} \right\}^{\frac{1}{2b}} = \widetilde{M} \left(\frac{1 - J}{1 + J} \right)^{\frac{1}{2b}}, \qquad (5.5)$$

where we put $J := \ell^{-\frac{\omega}{4\ell}}$ for simplicity and we define $\omega > 0$ later.

$$I_1 \le C_1 \lambda^{-\mu} \left(\frac{e^a \lambda^{-b} - e^{-a} \lambda^b}{e^a \lambda^{-b} + e^{-a} \lambda^b} \right)^{4\ell} + \lambda^2 =: F(\lambda).$$
(5.4)

$$\lambda_0 = \widetilde{M} \left(\frac{1-J}{1+J} \right)^{\frac{1}{2b}}, \quad \text{where } J := \ell^{-\frac{\omega}{4\ell}}.$$
(5.5)

Since we have

$$\frac{1-J}{1+J} = \frac{\omega}{8} \frac{\log \ell}{\ell} \{1+o(1)\},$$
$$\lambda_0 = \widetilde{M} \left(\frac{\omega}{8}\right)^{\frac{1}{2b}} \left(\frac{\log \ell}{\ell}\right)^{\frac{1}{2b}} \{1+o(1)\}^{\frac{1}{2b}}.$$

holds. Hence, we get

$$F(\lambda_0) = C_1 \widetilde{M}^{-\mu} \left(\frac{\omega}{8}\right)^{-\frac{\mu}{2b}} \ell^{-\omega + \frac{\mu}{2b}} (\log \ell)^{-\frac{\mu}{2b}} \{1 + o(1)\}$$
$$+ \widetilde{M}^2 \left(\frac{\omega}{8}\right)^{\frac{1}{b}} \left(\frac{\log \ell}{\ell}\right)^{\frac{1}{b}} \{1 + o(1)\}.$$

Since we can choose sufficiently large ω , we obtain

$$I_1 \leq F(\lambda_0) \leq C_2 \left(\frac{\log \ell}{\ell}\right)^{\frac{1}{b}}$$

for $\ell \geq 2$, where C_2 depends only on M, M_0 , ρ_* and ρ^* .