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Q.:bounded domain in R?
0Q, =T Ul (M, s closed, disjoint).

Au=0 inQ,,

u=¢ on [y, (1.1)

du

a = ¢I on ro. ro

v:outward unit vector normal of 9Q),.

In general, for given ¢ and ¢,
there does not always exist a solution v to (1.1) in Q..

We now assume that there exists the solution u to (1.1) in Q,.
Then, we consider a stability of an approximate solution obtained by the
iterative procedure for ¢ and (.
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Q.:bounded domain in R?
00, =ToUTl, (Ig, s closed, disjoint).

Au=0 inQ,,

u=aeo on ro, (11)

du

E = ¢I on ro. ro

v:outward unit vector normal of 9Q),.

Related works

Bastay-Kozlov-Turesson (2001)

- one-step stationary iterative method
- minimal error method

elliptic: Johansson (2004, 2006) ...
parabolic: Chapko-Johansson-Vavrychuk (2013), Johansson (2006)
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In the Bastay-Kozlov-Turesson iteration, we construct a sequence of
approximate solutions to (1.1) by solving boundary value problems repeatedly.

- If we would like to construct the solution to (1.1) in Q,, we need to solve the
corresponding boundary value problems in the whole of domain Q..
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In the Bastay-Kozlov-Turesson iteration, we construct a sequence of
approximate solutions to (1.1) by solving boundary value problems repeatedly.

- If we would like to construct the solution to (1.1) in Q*(C Q,) near Iy, we
can also consider the boundary value problems only in Q satisfying
Q" C QO C Q,. Then, we expect that we can construct approximate solutions
more stably when we choose smaller domain Q.
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X, Y:Hilbert space. K : X — Y:linear, compact, injective.

Problem
( For given y € Y, we find x € X satisfying Kx = y.

Let a > 0 and Kx = y. K*: adjoint operator to K. /:identity operator.

Landweber iteration (z: initial data)

X0 =z, x™ = (] — aK*K)x"" 4 aK*y. 2.1

By solving the recurrence relation (2.1), we obtain
~ ~ m—1
x" = R,y, where R,y = (I — aK*K)"z + a Z(/ — aK*K)*K*y. (2.2)
k=0
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X0 =z, X" = (] — aK*K)x" + aK*y. 2.1

m—1
x" = R,y, where R,y = (I— aK*K)"z+a) _(I—aK'K)'K'y.  (22)
k=0

IIK||z denotes the operator norm.

Theorem 1

let0 < a< W and z € X. If Kx* = ¢, then
C

I1Rny® = X°|x = 0 as m — oo.

Theorem 2

let0< a< W 0> 0 and z € X. Moreover, we choose m(0) > 0 such that
z

lim 6°m(8) =0, lim m(d) = oo.
0—+0 0—+0
For y?® with ||ly® — ¢°||y < 6, if Kx* = ¢°, then

Am IRuery® = x°llx = 0.
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Theorem 2

Let0<a< HKIIZ , 0> 0 and z € X. Moreover, we choose m(d) > 0 such that

lim &°m(8) =0, Llim m(d) = oo .
0—-+0 5—+0

For y? with ||y® — ¢°|ly < 8, if Kx® = ¢°, then

i [ Ry y® = x°lx = 0.

IRny® = Xllx < lIRny® = Ry llx + IRny” — x°llx

error from:  observation y® — ¢° iteration
m — oo: — 00 -0
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At each step, we solve the following boundary value problem

Au=0 inQ,

u=n on r1, (31)

du

Evie ¢ only,

Q Mo

and the adjoint problem

Av=0 1inQ,

v=_0 on r1, (32)

ov c r

a = onlyop.

Problems (3.1) and (3.2) have unique solutions, respectively.
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- Choose an arbitrary function n© e [2(I"y).

- The first approximation u©® to the solution u is obtained by solving the
problem (3.1) with n = n© on ;.

AU =0 inQ,
u® = on Ty,
ou'®

(;lv =4y only.

- Then, we find the auxiliary function v{9, which is given by the solution to the
problem (3.2) with { = {1, where {© = 4 — ¢ on I',.

AvO =0 in Q,
v =0 on [y,
v

=u®—¢ onl,

v
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- When the solutions u*=" and v~" have been constructed, the
approximation u'® is the solution to (3.1) with data n = n'¥ on 'y, where

v

0 — = 4
1 Y oy
and vy is a fixed positive number.

Au =0 inQ,
u® =n®  onry,

(€)
agv = on .

- The auxiliary function v(9 is the solution to (3.2) with data { = {¥), where
¥ = u® — @ on I.

AV =0 in Q,
v =0 on 7y,
ovlo

W = U([) — @ on ro.

14/24




Introduction Landweber iteration Bastay-Kozlov-Turesson iteration Main theorem
00000 0000 0000e00 0000000

Definition 3
We introduce an operator K : [%(Iy) — L?(I) through

Kn= Z1|ro forne Lz(ﬂ),

where z; is the solution to (3.1) with ¢ = 0.
Similarly, we define the operator K; : [?(I"g) — L%(I"o) by

Kig = 2|, for ¢ € L3(To),

where z, is the solution to (3.1) with n = 0.

Au=0 inQ,
u=n on [, (3.1)
% =¢ only,

av
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Kn= z|r, . where z is the solution to (3.1) with ¢y =0,

Ky = zz||—0 , where 2, is the solution to (3.1) with n = 0.

- K:compact, injective. Kj: compact.

- Solving (1.1) is equivalent to solving the following equation
Kn=g¢— K. (33)

If n is a solution to (3.3), then the solution to (3.1) satisfies u = ¢ on
"o and thus solves (1.1). Conversely, if u solves (1.1), then n = u||—1 is
a solution to (3.3).

- The adjoint K* : [?(Ig) — [%(I";) to the operator K is given by

e ()

> for ¢ € [2(Iy),

T

where v is the solution to (3.2).
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Kn=¢—K. (33)

Moreover, from the algorithm, we have
1 = (1= YK K)=) + yK* (o = Kig), (34)
Since (3.4) is the Landweber iteration for (3.3), from Theorem 1, we have
|9 — nllizr,) = 0 as £ — co.
Furthermore, by the well-posedness of (3.1), we obtain
0 = ull;2) < C'lIN" = nllizr,) = 0 as € — oo,
Theorem 4 (Bastay-Kozlov-Turesson, 2001)

Let u € L%(Q) be the solution to (1.1). We suppose that0 < y < .
||K”L2(I'1)~>L2 (Mo)
Let u!) be the ¢-th approximate solution.

Then, for every initial data function n® € [2(I'),

||U(€) - U||L2(Q) —0 as¥? — oco.
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“We choose the smaller domain where we consider the boundary value
problems, we construct them more stably.”

In order to show this, we consider the following situation.
let0< p. < p<p* <.

Qo={xeR|p<]x| <1}, B ={xeR|p"<|x| <1}, Q={xeR?|p< x| <1},
Mo={xeR?||x|=1}, T.={x eR?| x| = p.}, T1 ={x €eR?||x| = p}.
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Theorem 5 (1.)

Given positive numbers My and M.

We suppose that ¢ and ¢ are real-valued functions

with @l )+ 912, < M.

We assume that there exists the solution u

to the Cauchy problem (1.1) in Q, and its trace on T, is in 2.
We suppose that ||u]| 2, < M.

Let u'® be an approximate solution obtained by the iterative procedure with
n% =0 andy = p. Then, for € > 2 and p € [p., p*], the following estimate

holds: { o }
min{ 22 10x) 4
log ¢ Tog(T/p)
69 = s < € (257 , (1)

where a positive constant C depends only on My, M, p. and p*.
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log min{ Sl ee) 1}
6 — ulgy < C (%) (4.1)
Remark 6
We have
log (p*/p4) Ps
. ——— " forp, < p<—,
mln{log (p*1p.) 1} _ J log(1/p) PSP o
log(1/p)

Pu
1 for — < p < p*.
o PSP

There exists no p satisfying Z—I < p < p* in the case where /p, > p*.
Namely, in this case, we have

() 2 log ¢ “’%gg/g 2
69 = il < € (25

for any p.
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. [ log (p* /px
© log ¢ mm{ 335;(7175))'1}
[|ut) — u||L2(Q* <C E . (4.1)
og (p"/p:)

The larger p we choose, the larger the power on the right-hand side

log(1/p)
of (4.1) is. It means that we have the better stability as we choose p larger.
Moreover, with regard to the optimality of (4.1), we have the following theorem.
Theorem 7 (1.)
Let € > 0 be given. Under the assumptions in Theorem 5, there exists no

positive constant C depending only on My, M, p. and p* such that

log ¢ ) e

) (42)

||u(‘} —u||L2 ) < C(

holds for any ¢ > 2 and p € [p., p*]
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Since the Landweber iteration works with inexact data,
the Bastay-Kozlov-Turesson iteration also works.

We next consider the case where we know only approximations ¢° and ¢/°:

||‘P6 - ‘P”LZ(rO) <9, ||‘/16 - ¢||L2(r0) <. (4.2)

Let u®% be an approximation obtained by the iterative procedure with n© =0
and y = p for ¢% and (/.

Since we have

||U([)'6 - U”LZ(Q*) < ||U(€)'5 - u(g)”LZ(Q*) + ||U(g) - UHLZ(Q*)

< CVES +|u” — ull oy,

0> o0 — 00 — 0 ("." Theorem 5)

we have to choose ¢ well.
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Theorem 8 (1.)

Let the assumption (i) in Theorem 5 holds.
We suppose that ¢® and i° are real-valued functions with

llp? — <P||L2(r0) <o |y’ - ‘/’”Lz(ro) <9. (4.3)

Let ul®9 be an approximation obtained by the iterative procedure with nl® =0 and y = p
for Cauchy data ° and %. Then, for 0 < & < 1/e3 and p € [ps, p*], we have

1)@ (1l/°g>(fr //f*l/ )
o of px
(6210 7) stipriede for p. < p < 2=,
||u(l’(6,p)),5 - UH%Z(Q*) < Cc 1 (4-4)
2
(62log15) for% <p<ph,
where £(0, p) is the minimum integer satisfying (0, p) > 4(0, p) with
2log(1/p) log(p* Ipx)
(15) Tog(1/p)+log(p¥ Tpx) (lo 1) Tog(1/p)+10g(p* Ipx) for p. < p < p%
(0, p) =
1 1\2 P
5(logg) fOfESPSP*'

and a positive constant c depends only on My, M, p. and p*.
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Theorem 5 (1.)

Given positive numbers My and M.

We suppose that ¢ and ¢ are real-valued functions

with @l + 012, < M.

We assume that there exists the solution u

to the Cauchy problem (1.1) in Q, and its trace on T, is in 2.
We suppose that ||u][ ;2 ) < M.

Let u'® be an approximate solution obtained by the iterative procedure with
n% =0 and y = p. Then, for € > 2 and p € [p., p*], the following estimate
holds:

log (p*/ps) 1}

log V4 ) mm{ log(T/p) *

¢

where a positive constant C depends only on My, M, p. and p*.

[t — “”meX) <C ( , 4.1
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00@00000
@l + 1122y < Mo, Nlullzr,) < M.
i (p* Ipx)
log ¢ mm{ 3’9(1/9) '1}
16— ullfa gy < C( ) ) : (4.1)
||u(l’) — u||f2m*) <8G(h + h), (5.1
where
e 20 2
Z 1—— 1 1 (pr) A [
= (p* + p‘k) 2 2k
and . N .
= Z {1 _ L} P, Y|
= (p* + p*)? 2 2k
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000@0000
@l + 1012y < Mg, Nullizr,) < M.
() 20 2
Z { } (p*)—2k+2 ﬂ _ %
p— (p* +p k)? 2 2k
Lemma 9

If real-valued functions ¢ and ¢ satisfy ||</)||L2 ot lllZ, 2y S M2, then we have
=1
If real-valued functions ¢ and ¢ satisfy ”u”iZ(r*) < M?, then we have

> |%

k=1

/\/I2 1~2
= M, . 2
Sgn Mo (-2)

P ¢'k
2

2
-Zkg M My = M (5.3)
271 Ps

2
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1 ~2

= o, |
e 4 e 0 .

Zk=1 2 T 2| 87r =i 3Mo (-2)
= | o 4’ 2k M? Y

—_— < =: . .
kg 5 " ok| P S g T M =M (5.3)
) 20 2
Z 1_ 4 (p*) 2+ [

- (P +p) 2 2k

Let 0 < A < M be given. Let N be the minimum integer satisfying

N -
(&) /\~/I§/\, namely N —1 < M <
P log(p./p*)
We now divide /; into two parts:
N—1 20 2
4 _ O Wk
I = P w—2k+2 | Pk Wk
! kZ{ 3 +p*k)2} N R
) ﬂ - ﬂ 2

+ Z 1— 4 ze( *)72k+2
o) ¥ 2 2k

k=N
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S0 u e M
2 T2k T8 27
k=1
i ﬂ_%z 2 o M? L = P
L2 T2k P S 2, T
- 4 # n—2k2 | P i ?
/1.—Z{1—m} (%) 5 T 9%k

(5.2)

(53)

Let 0 < A < M be given. Let N be the minimum integer satisfying
log(A/M)

N
Px Iy
= M < A namely N—1 < ————— "~ < N.
( ) ! log(p./p")

p*
We now divide /; into two parts:
2

N-1 4 20 o 4}/(
_ o #\—2k+2 | K Tk
h= ; {1 (p* + p k)2 } ) 2 2
0 4 20 e | @ l,[]k 2
1 ¥\ —2k+2 [ Pk K
t) { (P + p7*)? } ) 2 2k

k=N
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00000080 |
We obtain 40
e At —emapb
N s 2 _. .
hs it (D) 2= 54
where Y
121\ e 2log(1/p*)
C = -M, — = Toalo* /o) !
log(1/p) v
=—"2>0, a=blogM.
log(p*/ps) i

Now, let us choose A such that F(A) is as small as possible.
We choose A such that

eolgh — et \ ¥ _
P ] B ’

that is, we define

a2

=S - () 59

1+ 61

where we put J := £~ for simplicity and we define w > 0 later.
718
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40
L [eAt —e A 2
h <A (760 o) TA=FO. (5.4)
I vl g h o
= _— =V %
0 (1 T ) , Wwhere J: . (5.5)
Since we have 1-) _w l°97€{1 +o(1)}
1+ 8 ¢ '
1 a
o~ (w\z [logl )2
o=M(%) (7) {1+ 0(1)} 5

holds. Hence, we get )
Flho) = GM™ (5) ™ e (log &) {1+ o(1)}
1 1
o (w)s [logl)?®
+ M (5) (7 ) {1+ 0(1)}.

Since we can choose sufficiently large w, we obtain

1
b
hs%)s&(%)

for £ > 2, where G, depends only on M, My, p. and p*.
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