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Ω∗: bounded domain in R2

∂Ω∗ = Γ0 ∪ Γ∗ (Γ0, Γ∗: closed, disjoint).





∆u = 0 in Ω∗,

u = ϕ on Γ0,
∂u
∂ν = ψ on Γ0.

(1.1)

ν: outward unit vector normal of ∂Ω∗.

Γ0

Γ∗

Ω∗

In general, for given ϕ and ψ,
there does not always exist a solution u to (1.1) in Ω∗.
We now assume that there exists the solution u to (1.1) in Ω∗.
Then, we consider a stability of an approximate solution obtained by the
iterative procedure for ϕ and ψ.
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ν: outward unit vector normal of ∂Ω∗.

Γ0

Γ∗

Ω∗

Related works
Bastay-Kozlov-Turesson (2001)

- one-step stationary iterative method
- minimal error method

elliptic: Johansson (2004, 2006) ...
parabolic: Chapko-Johansson-Vavrychuk (2013), Johansson (2006)
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In the Bastay-Kozlov-Turesson iteration, we construct a sequence of
approximate solutions to (1.1) by solving boundary value problems repeatedly.

- If we would like to construct the solution to (1.1) in Ω∗, we need to solve the
corresponding boundary value problems in the whole of domain Ω∗.

- If we would like to construct the solution to (1.1) in Ω∗(⊂ Ω∗) near Γ0, we
can also consider the boundary value problems only in Ω satisfying
Ω∗ ⊂ Ω ⊂ Ω∗. Then, we expect that we can construct approximate solutions
more stably when we choose smaller domain Ω.

Γ0

Γ∗

Ω∗ Γ0Ω∗ Ω
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X , Y : Hilbert space. K : X → Y : linear, compact, injective.

For given y ∈ Y , we find x ∈ X satisfying Kx = y.
Problem

Let a > 0 and Kx = y. K ∗: adjoint operator to K . I: identity operator.
Landweber iteration (z : initial data)

x (0) = z , x (m) = (I − aK ∗K )x (m−1) + aK ∗y. (2.1)

By solving the recurrence relation (2.1), we obtain

x (m) = R̃my, where R̃my = (I − aK ∗K )mz + a
m−1∑

k=0

(I − aK ∗K )k K ∗y. (2.2)
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x (0) = z , x (m) = (I − aK ∗K )x (m−1) + aK ∗y. (2.1)

x (m) = R̃my, where R̃my = (I − aK ∗K )mz + a
m−1∑

k=0

(I − aK ∗K )k K ∗y. (2.2)

||K ||L denotes the operator norm.
Theorem 1
Let 0 < a < 2

||K ||2L
and z ∈ X. If Kx0 = y0, then

||R̃my0 − x0||X → 0 as m → ∞.

Theorem 2
Let 0 < a < 2

||K ||2L
, δ > 0 and z ∈ X. Moreover, we choose m(δ) > 0 such that

lim
δ→+0

δ2m(δ) = 0, lim
δ→+0

m(δ) = ∞.

For yδ with ||yδ − y0||Y ≤ δ , if Kx0 = y0, then

lim
δ→+0

||R̃m(δ)yδ − x0||X = 0.

9/24



Introduction Landweber iteration Bastay-Kozlov-Turesson iteration Main theorem

Theorem 2
Let 0 < a < 2

||K ||2L
, δ > 0 and z ∈ X. Moreover, we choose m(δ) > 0 such that

lim
δ→+0

δ2m(δ) = 0 , lim
δ→+0

m(δ) = ∞ .

For yδ with ||yδ − y0||Y ≤ δ , if Kx0 = y0, then

lim
δ→+0

||R̃m(δ)yδ − x0||X = 0.

||R̃myδ − x0||X ≤ ||R̃myδ − R̃my0||X + ||R̃my0 − x0||X

error from: observation yδ − y0 iteration
m → ∞: → ∞ → 0

Thus, we have to choose m depending on δ .
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At each step, we solve the following boundary value problem





∆u = 0 in Ω,
u = η on Γ1,
∂u
∂ν = ψ on Γ0,

(3.1)

and the adjoint problem





∆v = 0 in Ω,
v = 0 on Γ1,
∂v
∂ν = ζ on Γ0.

(3.2)

Problems (3.1) and (3.2) have unique solutions, respectively.

Ω Γ0

Γ1
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- Choose an arbitrary function η(0) ∈ L2(Γ1).
- The first approximation u(0) to the solution u is obtained by solving the

problem (3.1) with η = η(0) on Γ1.





∆u(0) = 0 in Ω,
u(0) = η(0) on Γ1,
∂u(0)

∂ν = ψ on Γ0.

- Then, we find the auxiliary function v (0), which is given by the solution to the
problem (3.2) with ζ = ζ (0), where ζ (0) = u(0) − ϕ on Γ0.






∆v (0) = 0 in Ω,
v (0) = 0 on Γ1,
∂v (0)

∂ν = u(0) − ϕ on Γ0.
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- When the solutions u(ℓ−1) and v (ℓ−1) have been constructed, the
approximation u(ℓ) is the solution to (3.1) with data η = η(ℓ) on Γ1, where

η(ℓ) = u(ℓ−1) + γ ∂v (ℓ−1)

∂ν
and γ is a fixed positive number.






∆u(ℓ) = 0 in Ω,
u(ℓ) = η(ℓ) on Γ1,
∂u(ℓ)

∂ν = ψ on Γ0.

- The auxiliary function v (ℓ) is the solution to (3.2) with data ζ = ζ (ℓ), where
ζ (ℓ) = u(ℓ) − ϕ on Γ0.






∆v (ℓ) = 0 in Ω,
v (ℓ) = 0 on Γ1,
∂v (ℓ)

∂ν = u(ℓ) − ϕ on Γ0.
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Definition 3
We introduce an operator K : L2(Γ1) → L2(Γ0) through

Kη = z1|Γ0
for η ∈ L2(Γ1),

where z1 is the solution to (3.1) with ψ = 0.
Similarly, we define the operator K1 : L2(Γ0) → L2(Γ0) by

K1ψ = z2|Γ0
for ψ ∈ L2(Γ0),

where z2 is the solution to (3.1) with η = 0.






∆u = 0 in Ω,
u = η on Γ1,
∂u
∂ν = ψ on Γ0,

(3.1)
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Kη = z1|Γ0
, where z1 is the solution to (3.1) with ψ = 0,

K1ψ = z2|Γ0
, where z2 is the solution to (3.1) with η = 0.

- K : compact, injective. K1: compact.
- Solving (1.1) is equivalent to solving the following equation

Kη = ϕ − K1ψ. (3.3)

If η is a solution to (3.3), then the solution to (3.1) satisfies u = ϕ on
Γ0 and thus solves (1.1). Conversely, if u solves (1.1), then η = u|Γ1

is
a solution to (3.3).

- The adjoint K ∗ : L2(Γ0) → L2(Γ1) to the operator K is given by

K ∗ζ = −
(
∂v
∂ν

)∣∣∣∣
Γ1

for ζ ∈ L2(Γ0),

where v is the solution to (3.2).
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Kη = ϕ − K1ψ. (3.3)

Moreover, from the algorithm, we have

η(ℓ) = (I − γK ∗K )η(ℓ−1) + γK ∗(ϕ − K1ψ). (3.4)

Since (3.4) is the Landweber iteration for (3.3), from Theorem 1, we have

||η(ℓ) − η||L2(Γ1) → 0 as ℓ → ∞.

Furthermore, by the well-posedness of (3.1), we obtain

||u(ℓ) − u||L2(Ω) ≤ C ′||η(ℓ) − η||L2(Γ1) → 0 as ℓ → ∞.

Theorem 4 (Bastay-Kozlov-Turesson, 2001)
Let u ∈ L2(Ω) be the solution to (1.1). We suppose that 0 < γ < 2

||K ||2L2(Γ1)→L2(Γ0)
.

Let u(ℓ) be the ℓ-th approximate solution.
Then, for every initial data function η(0) ∈ L2(Γ1),

||u(ℓ) − u||L2(Ω) → 0 as ℓ → ∞.
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“We choose the smaller domain where we consider the boundary value
problems, we construct them more stably.”

In order to show this, we consider the following situation.

Let 0 < ρ∗ ≤ ρ ≤ ρ∗ < 1.
Ω∗ = {x ∈ R2 | ρ∗ < |x | < 1}, Ω∗ = {x ∈ R2 | ρ∗ < |x | < 1}, Ω = {x ∈ R2 | ρ < |x | < 1},

Γ0 = {x ∈ R2 | |x | = 1}, Γ∗ = {x ∈ R2 | |x | = ρ∗}, Γ1 = {x ∈ R2 | |x | = ρ}.

1ρ∗

Γ∗

Γ0
Ω∗

ρ∗

Ω∗

ρ
Γ1

Ω
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Theorem 5 (I.)

(♯)





Given positive numbers M0 and M.
We suppose that ϕ and ψ are real-valued functions
with ||ϕ||2L2(Γ0) + ||ψ||2L2(Γ0) ≤ M2

0 .
We assume that there exists the solution u
to the Cauchy problem (1.1) in Ω∗ and its trace on Γ∗ is in L2.
We suppose that ||u||L2(Γ∗) ≤ M.





Let u(ℓ) be an approximate solution obtained by the iterative procedure with
η(0) = 0 and γ = ρ. Then, for ℓ ≥ 2 and ρ ∈ [ρ∗, ρ∗], the following estimate
holds:

||u(ℓ) − u||2L2(Ω∗) ≤ C
(

log ℓ
ℓ

)min
{

log (ρ∗ /ρ∗ )
log(1/ρ) ,1

}

, (4.1)

where a positive constant C depends only on M0, M, ρ∗ and ρ∗.
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||u(ℓ) − u||2L2(Ω∗) ≤ C
(

log ℓ
ℓ

)min
{

log (ρ∗ /ρ∗ )
log(1/ρ) ,1

}

. (4.1)

Remark 6
We have

min
{

log (ρ∗/ρ∗)
log(1/ρ) , 1

}
=






log (ρ∗/ρ∗)
log(1/ρ) for ρ∗ ≤ ρ < ρ∗

ρ∗ ,

1 for ρ∗

ρ∗ ≤ ρ ≤ ρ∗.

There exists no ρ satisfying ρ∗
ρ∗ ≤ ρ ≤ ρ∗ in the case where √ρ∗ > ρ∗.

Namely, in this case, we have

||u(ℓ) − u||2L2(Ω∗) ≤ C
(

log ℓ
ℓ

) log (ρ∗ /ρ∗ )
log(1/ρ)

for any ρ.
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||u(ℓ) − u||2L2(Ω∗) ≤ C
(

log ℓ
ℓ

)min
{

log (ρ∗ /ρ∗ )
log(1/ρ) ,1

}

. (4.1)

The larger ρ we choose, the larger the power log (ρ∗/ρ∗)
log(1/ρ) on the right-hand side

of (4.1) is. It means that we have the better stability as we choose ρ larger.
Moreover, with regard to the optimality of (4.1), we have the following theorem.

Theorem 7 (I.)
Let ε > 0 be given. Under the assumptions in Theorem 5, there exists no
positive constant Ĉ depending only on M0, M, ρ∗ and ρ∗ such that

||u(ℓ) − u||2L2(Ω∗) ≤ Ĉ
(

log ℓ
ℓ

) log(ρ∗ /ρ∗ )
log(1/ρ) +ε

(4.2)

holds for any ℓ ≥ 2 and ρ ∈ [ρ∗, ρ∗].
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Since the Landweber iteration works with inexact data,
the Bastay-Kozlov-Turesson iteration also works.

We next consider the case where we know only approximations ϕδ and ψδ :

||ϕδ − ϕ||L2(Γ0) ≤ δ, ||ψδ − ψ||L2(Γ0) ≤ δ. (4.2)

Let u(ℓ),δ be an approximation obtained by the iterative procedure with η(0) = 0
and γ = ρ for ϕδ and ψδ .

Since we have

||u(ℓ),δ − u||L2(Ω∗) ≤ ||u(ℓ),δ − u(ℓ)||L2(Ω∗) + ||u(ℓ) − u||L2(Ω∗)

≤ C̃
√
ℓ δ + ||u(ℓ) − u||L2(Ω∗),

ℓ → ∞: → ∞ → 0 (∵ Theorem 5 )

we have to choose ℓ well.

23/24



Introduction Landweber iteration Bastay-Kozlov-Turesson iteration Main theorem

Theorem 8 (I.)
Let the assumption (♯) in Theorem 5 holds.
We suppose that ϕδ and ψδ are real-valued functions with

||ϕδ − ϕ||L2(Γ0) ≤ δ, ||ψδ − ψ||L2(Γ0) ≤ δ. (4.3)

Let u(ℓ),δ be an approximation obtained by the iterative procedure with η(0) = 0 and γ = ρ
for Cauchy data ϕδ and ψδ . Then, for 0 < δ ≤ 1/e3 and ρ ∈ [ρ∗, ρ∗], we have

||u(ℓ(δ,ρ)),δ − u||2L2(Ω∗) ≤ C̃






(
δ2 log 1

δ

) log(ρ∗ /ρ∗ )
log(1/ρ)+log(ρ∗ /ρ∗ )

for ρ∗ ≤ ρ < ρ∗
ρ∗ ,

(
δ2 log 1

δ

) 1
2

for ρ∗
ρ∗ ≤ ρ ≤ ρ∗,

(4.4)

where ℓ(δ, ρ) is the minimum integer satisfying ℓ(δ, ρ) ≥ ℓ0(δ, ρ) with

ℓ0(δ, ρ) :=






(
1
δ

) 2 log(1/ρ)
log(1/ρ)+log(ρ∗ /ρ∗ )

(
log 1

δ

) log(ρ∗ /ρ∗ )
log(1/ρ)+log(ρ∗ /ρ∗ )

for ρ∗ ≤ ρ < ρ∗
ρ∗ ,

1
δ

(
log 1

δ

) 1
2

for ρ∗
ρ∗ ≤ ρ ≤ ρ∗,

and a positive constant C̃ depends only on M0, M, ρ∗ and ρ∗.
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||ϕ||2L2(Γ0) + ||ψ||2L2(Γ0) ≤ M2
0 , ||u||L2(Γ∗) ≤ M.

||u(ℓ) − u||2L2(Ω∗) ≤ C
(

log ℓ
ℓ

)min
{

log (ρ∗ /ρ∗ )
log(1/ρ) ,1

}

. (4.1)

||u(ℓ) − u||2L2(Ω∗) ≤ 8C1(I1 + I2), (5.1)

where

I1 :=
∞∑

k=1

{
1 − 4

(ρk + ρ−k )2

}2ℓ

(ρ∗)−2k+2
∣∣∣∣
ϕk

2 − ψk

2k

∣∣∣∣
2

and

I2 :=
∞∑

k=1

{
1 − 4

(ρk + ρ−k )2

}2ℓ ∣∣∣∣
ϕk

2 + ψk

2k

∣∣∣∣
2

ρ2k .
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||ϕ||2L2(Γ0) + ||ψ||2L2(Γ0) ≤ M2
0 , ||u||L2(Γ∗) ≤ M.

I1 :=
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(ρk + ρ−k )2

}2ℓ

(ρ∗)−2k+2
∣∣∣∣
ϕk

2 − ψk

2k

∣∣∣∣
2

.

Lemma 9
If real-valued functions ϕ and ψ satisfy ||ϕ||2L2(Γ0) + ||ψ||2L2(Γ0) ≤ M2

0 , then we have

∞∑

k=1

∣∣∣∣
ϕk

2 ± ψk

2k

∣∣∣∣
2

≤ M2
0

8π =: 1
2M̃0

2
. (5.2)

If real-valued functions ϕ and ψ satisfy ||u||2L2(Γ∗) ≤ M2, then we have

∞∑

k=1

∣∣∣∣
ϕk

2 − ψk

2k

∣∣∣∣
2

ρ−2k
∗ ≤ M2

2πρ∗
+ M̃0

2
=: M̃2. (5.3)
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We obtain

I1 ≤ C1λ−µ
(

eaλ−b − e−aλb

eaλ−b + e−aλb

)4ℓ

+ λ2 =: F (λ), (5.4)

where

C1 = 1
2M̃0

2
(

1
ρ∗

) 2 log M̃
log(ρ∗ /ρ∗ )

, µ = 2 log(1/ρ∗)
log(ρ∗/ρ∗)

> 0,

b = log(1/ρ)
log(ρ∗/ρ∗)

> 0, a = b log M̃.

Now, let us choose λ such that F (λ) is as small as possible.
We choose λ0 such that

(
eaλ−b

0 − e−aλb
0

eaλ−b
0 + e−aλb

0

)4ℓ

= ℓ−ω.

that is, we define

λ0 =
{

e2a (
1 − ℓ− ω

4ℓ
)

1 + ℓ− ω
4ℓ

} 1
2b

= M̃
(

1 − J
1 + J

) 1
2b
, (5.5)

where we put J := ℓ− ω
4ℓ for simplicity and we define ω > 0 later.
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Outline of the proof

I1 ≤ C1λ−µ
(

eaλ−b − e−aλb

eaλ−b + e−aλb

)4ℓ

+ λ2 =: F (λ). (5.4)

λ0 = M̃
(

1 − J
1 + J

) 1
2b
, where J := ℓ− ω

4ℓ . (5.5)

Since we have 1 − J
1 + J = ω

8
log ℓ
ℓ {1 + o(1)},

λ0 = M̃
(ω

8

) 1
2b

(
log ℓ
ℓ

) 1
2b

{1 + o(1)} 1
2b .

holds. Hence, we get
F (λ0) = C1M̃−µ

(ω
8

)− µ
2b ℓ−ω+ µ

2b (log ℓ)− µ
2b {1 + o(1)}

+ M̃2
(ω

8

) 1
b

(
log ℓ
ℓ

) 1
b

{1 + o(1)}.

Since we can choose sufficiently large ω, we obtain

I1 ≤ F (λ0) ≤ C2

(
log ℓ
ℓ

) 1
b

for ℓ ≥ 2, where C2 depends only on M , M0, ρ∗ and ρ∗.
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