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Integrated density of states (1)

Consider the random Schrödinger operator

H = −∆+ Vω(x) on Rd,

(ω is some random parameter), and assume that Vω satisfies some
stastistically translational invariant condition (e.g., Vω(x) and
Vω(x+ a) have the same probability distribution). Then, for λ ∈ R,
the integrated density of states (IDS) N(λ) is defined as follows:

N(λ) = lim
L→∞

NQL
(λ)

|QL|
,

NQL
(λ) = #{µ : eigenvalue of HQL

;µ ≤ λ},

where HQL
is the operator H restricted on the cube QL = [0, L]d

with some boundary conditions, and |S| is the Lebesgue measure of
the set S.
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Integrated density of states (2)

It is widely believed that IDS is closely related to the electric
conductance of the material. If the density of states (derivative of
IDS) is small in some interval I, then an electron with energy in I
can hardly move along the material (insulator).

In the mathematical analysis of IDS, one of the main topic is the
asymptotics of IDS near the bottom of the spectrum of H.
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Lifshitz tail (1)

Consider the Anderson model

Vω =
∑
n∈Zd

aω(n)V0(x− n), V0 ∈ C∞
0 (Rd;R) \ {0},

suppV0 ⊂ [0, 1]d, {aω(n)}n∈Zd : i.i.d., aω(n) ≥ 0.

If V0 ≥ 0, under appropriate condition on the probability distribution
of aω(n), it is known that σ(H) = [0,∞) and the Lifshitz tail

N(λ) ≤ e−Cλ−d/2

(λ > 0)

holds (cf. Lifshitz 1965, Nakao 1977, ...). There is a nice Japanese
review by Ueki 2014 about this subject.

Takuya Mne (Kyoto Inst. Tech.) IDS for random PI Himeji Conf. on PDE 4 / 49



Lifshitz tail (2)

If V0 ≤ 0, then the spectrum can have the negative part:
σ(H) ⊃ [λ0, λ0 + ϵ], λ0 = inf σ(H) < 0. Even in this case, the
Lifshitz tail

N(λ) ≤ e−C(λ−λ0)−d/2

(λ0 < λ < λ0 + ϵ)

holds under appropritate conditions (cf. Klopp 2002).
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Random positions

Next, consider the case that the positions of obstacles are random:

Vω(x) =
∑
y∈Yω

V0(x− y),

where Yω is some random set obeying some probability distribution.
The random point measure

µω =
∑
y∈Yω

δy

is called a point process. Yω is regarded as the support of µω.

Recently, the theory of point process is extensively studied from the
viewpoint of the probability theory, the statistics, and various
practical applications.
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Examples of point processes (1)

(1) Poisson point process. Most basic point process, which
represents the complete spatial randomness. (Today’s main
topic)

(2) Gibbs point process. The point process having the
Radon-Nykokim density with respect to the Poisson point
process with intensity 1. Many point processes are represented
in this form, e.g., Hard core process, Strauss process, etc. (cf.
Nakagawa 2023)

(3) Cox point process. Poisson point process with random intensity
measure.

(4) Determinantal point process or Fermion point process. Random
points have some repulsive interactions (random points tend to
escape from each other). (cf. Japanese review by Shirai 2014)
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Examples of point processes (2)

The book

‘Spatial Point Patterns, Methodology and Applications with R’
by Adrian Baddeley, Ege Rubak, and Rolf Turner

contains much more examples, and explain how to simulate point
processes by using the R library spatstat.

Below we shall show some pictures of point processes created by
spatstat.
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Poisson point process (1)

We say µω is the Poisson point process with intensity measure ρdx
(ρ > 0 is a constant) if the following holds.

(1) For any bounded measureble set S, µω(S) obeys the Poisson
distribution with parameter ρ|S|, where |S| is the Lebesgure
measure of S.

(2) For any disjoint bounded measurable sets Sj (j = 1, . . . , n), the
random variables µω(Sj) (j = 1, . . . , n) are independent.

In the next slide, we show two examples of the Poisson point process
on [0, 10]2 with intensity 1dx.
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Poisson point process (2)

  Poisson point process   Poisson point process
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Hard core point process (1)

The hard core point process is obtained by removing the events

‘there is at least a pair x, y ∈ Yω with |x− y| ≤ R’

from the Poisson point process. Consequently, the balls

{By(R/2)}y∈Yω , By(R) = {x ∈ Rd; |x− y| < R}

do not intersect with each other.

In the next slide, we show two examples of the hard core point
process on [0, 10]2 with (original) intensity 1dx and R = 0.5.
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Hard core point process (R = 0.5)

  Hard core point process R 0.5   Hard core point process R 0.5
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Determinantal point process (1)

The determinantal point process with Gaussian kernel is characterized
by the kernel function

C(x, y) = λR(x, y), R(x, y) = exp

(
−|x− y|2

α2

)
,

where λ > 0 and α > 0 are constants with λ ≤ 1/(πα2). The
intensity is λdx, and the n-point correlation function is given by

ρ(x1, . . . , xn) = det(R(xi, xj))
n
i,j=1.

If α is large, then the points tend to escape from other points
(repulsive interaction).
In the next slides, we show two examples of the determinantal point
process with Gaussian kernel on [0, 1]2 with λ = 100, α = 0.05 or
α = 0.001.
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Determinantal point process (α = 0.05)

  Determinantal point process alpha 0.05   Determinantal point process alpha 0.05
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Determinantal point process (α = 0.001)

  Determinantal point process alpha 0.001   Determinantal point process alpha 0.001

Takuya Mne (Kyoto Inst. Tech.) IDS for random PI Himeji Conf. on PDE 15 / 49



Poisson random potential (1)

Consider the random potential

Vω(x) =
∑
y∈Yω

V0(x− y),

V0 ∈ C∞
0 (Rd), V0 ≤ 0, and the minimum of V0 is V0(0) < 0. Assume

Yω is the support of the Poisson point process with constant intensity
measure ρdx (ρ > 0).
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Poisson random potential (2)

In this case, the spectrum becomes the whole real
line

σ(H) = R,

even if V0 is bounded from below.

If n random points exist near 0, the depth of the
potential well is almost multiplied by n. The number
n can be arbitrarily large, so the potential well can
be arbitrarily deep (with very small probability).

n points

-
x

nV0(0)

y
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Pastur tail (1)

The above mechanism also explains very rapid decay of IDS as
λ → −∞:

logN(λ) = − |λ|
|V0(0)|

log |λ| · (1 + o(1)) as λ → −∞ (1)

(Pastur 1974, 1977).

(1) means N(λ) decays super exponentially O(|λ|−C|λ|) as λ → −∞,
and is sometimes called the Pastur tail.
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Pastur tail (2)

When V0 ≤ 0, and V0(0) is the minimum, negative
spectrum λ is created by at least

n =
|λ|

|V0(0)|

random points in a small ball Bϵ. The probability of
this event is

p ≑ e−ρ|Bϵ| (ρ|Bϵ|)n

n!
.

Combining this estimate with the Stirling formula
n! ∼ (2πn)1/2 (n/e)n, we get the Pastur tail (1).

n points

-
x

nV0(0)

y
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Schrödinger operator with point interactions

Next we introduce the point interactions.

Let Y be a locally finite set in Rd (d = 1, 2, 3), that is,

#(Y ∩ B0(R)) < ∞

for every R > 0, where Bx(R) = {y ∈ Rd | |y − x| < R}. Let
α = (αy)y∈Y be a sequence of real numbers. We consider the
Schrödinger operator −∆α,Y , formally written as

−∆α,Y = −∆+ ‘point interactions on Y ’,

where αy is the parameter representing the interaction at the point y.
Basic facts about −∆α,Y are found in the book ‘Solvable models in
quantum mechanics’ by Albeverio et al.
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Definition of Point interactions

A rigorous definition of −∆α,Y is as follows.

−∆α,Y u = −∆|Rd\Y u,

D(−∆α,Y ) = {u ∈ H2
loc(R

d \ Y ) ∩ L2(Rd) ; −∆|Rd\Y u ∈ L2(Rd),

u satisfies (BC)y for every y ∈ Y }.

Here, −∆|Rd\Y u is defined as a Schwartz distribution on Rd \ Y .
The boundary condition (BC)y is as follows:

d = 1 u(y+) = u(y−) = u(y), u′(y+)− u′(y−) = αyu(y).

d = 2 u(x) = uy,0 log |x− y|+ uy,1 + o(1) as x → y, and
2παyuy,0 + uy,1 = 0.

d = 3 u(x) = uy,0|x− y|−1 + uy,1 + o(1) as x → y, and
−4παyuy,0 + uy,1 = 0.
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Spectrum of −∆α,Y for finite Y

The following result is taken from the book of Albeverio et al.

Proposition 1 (Spectrum of −∆α,Y for finite Y )

Let d = 3. Let Y = {yj}Nj=1 be a finite set and α = (αj)
N
j=1 (we

write αj = αyj). Then, for λ = −s2 (s > 0), λ is an eigenvalue of
−∆α,Y if and only if detA = 0, where A = (ajk) is the N ×N
matrix given by

ajk =


αj +

s

4π
(j = k),

− e−s|yj−yk|

4π|yj − yk|
(j ̸= k).

The non-diagonal component ajk is −G(yj, yk;−s2), where
G(x, x′;λ) is the integral kernel of (−∆− λ)−1. There are similar
formulas in the case d = 1, 2.
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Spectrum of −∆α,Y for #Y = 1

In the case #Y = 1 and α1 = α, λ = −s2 (s > 0) is an eigenvalue of
−∆α,Y if and only if

α +
s

4π
= 0.

Thus

σ(−∆α,Y ) ∩ (−∞, 0) =

{
{−(4πα)2} (α < 0),

∅ (α ≥ 0).
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Spectrum of −∆α,Y for #Y = 2 (1)

In the case #Y = 2, |y1 − y2| = R and α1 = α2 = α, λ = −s2

(s > 0) is an eigenvalue of −∆α,Y if and only if 0 is an eigenvalue of

A =

α +
s

4π
−e−sR

4πR

−e−sR

4πR
α +

s

4π

 ,

that is,

α +
1

4π

(
s+

e−sR

R

)
= 0 ⇔ f(s) := s+

e−sR

R
= −4πα,

α +
1

4π

(
s− e−sR

R

)
= 0 ⇔ g(s) := s− e−sR

R
= −4πα.
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Spectrum of −∆α,Y for #Y = 2 (2)

R=1

y=f(s)

y=g(s)
-4πα

5 10
s

-10

-5

5

10
y

R=0.1

y=f(s)

y=g(s)

-4πα

5 10
s

-20

-10

10

20
y

As R → +0, the y-intercept −1/R of y = g(s) tends to −∞. Thus
the solution s of g(s) = −4πα tends to ∞ as R → +0, so
λ = −s2 → −∞.

Thus we see the following:

’When #Y = 2 and two points becomes closer,
then an eigenvalue of −∆α,Y tends to −∞’.

Thus the behavior of the eigenvalues are completely different from
the scalar potential case.
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Spectrum of −∆α,Y for #Y = 2 (3)

For fixed s, let R = Rα(s) be the solution of

s− e−sR

R
= −4πα

with respect to R. If α = 0, then the equation is simplified as

sR− e−sR = 0 ⇔ sR = t0,

where t0 is the unique solution of t− e−t = 0 (t0 ≑ 0.5671... ). Thus
we have explicitly

R0(s) =
t0
s
.

Even if α ̸= 0, we have a similar asymptotics

Rα(s) ∼
t0
s

(s → ∞),

where f ∼ g means f/g → 1.
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Poisson point interaction (1)

Let us consider the Schrödinger operators with Poisson point
interactions, that is, the operator −∆α,Yω when Yω is the Poisson
configuration (support of the Poisson point process).

For simplicity, we assume α is a constant sequence (the value αy is
independent of y), and we denote its common value also by α. The
basic facts about this operator are summarized as follows.
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Poisson point interaction (2)

Theorem 2 (Kaminaga–M–Nakano 2020)

Let d = 1, 2, 3. Assume α is a constant sequence, and Yω is the
Poisson configuration with intensity ρdx, where ρ > 0 is a constant.
Then, the following holds.

(1) The operator −∆α,Yω is self-adjoint almost surely.

(2) We have almost surely

σ(−∆α,Yω) =

{
[0,∞) (α ≥ 0),

R (α < 0),
(d = 1),

σ(−∆α,Yω) = R (α ∈ R), (d = 2, 3).

The result for d = 1 is obtained in Minami 1988. The result (2) for
d = 2, 3 comes from the fact the point interaction is always negative
when d = 2, 3.
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Asymptotics of IDS as λ → −∞ (d = 1, α < 0)

When d = 1 and α < 0, then σ(−∆α,Yω) = R, and we can consider
the asymptotics of IDS as λ → −∞. The result is written in the
book ’Introduction to the theory of disordered systems’ by
Lifshits–Gredskul–Pastur, as follows.

N(λ) ∼
√

|λ| exp
[
−2|α|−1|λ|1/2 log

(
|λ|
|α|ρ

)]
as λ → −∞

(Magarill–Entin 1966).

The decay order is a bit weaker than exponential decay, but faster
than polynomial decay.
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Main result for d = 3 (1)

Theorem 3 (Kaminaga–Nakano–M, preprint.)

Let d = 3. Suppose that α is a constant sequence, and Yω is the
Poisson configuration with intensity measure ρdx, ρ > 0. Let N(λ)
be the corresponding IDS for −∆α,Yω . Then we have

N(−s2) =
2π

3
ρ2Rα(s)

3 +O(s−6+ϵ) (s → ∞), (2)

for every 0 < ϵ < 3, where Rα(s) is the solution of

s− e−sR

R
= −4πα

with respect to R.
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Main result for d = 3 (2)

Theorem 3 (continued)

In particular, the principal term is

N(−s2) ∼ 2π

3
ρ2t30s

−3 (s → ∞), (3)

where t0 is the unique positive solution of t = e−t (t0 ≑ 0.567).

Theorem 3 says

N(λ) = O(|λ|−3/2) (λ → −∞).

The principal term given in (3) is independent α, but the first term in
RHS of (2) gives more accurate approximation, according to our
numerical verification.
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Numerical test

In order to verify the result

N(−s2) ∼ 2π

3
ρ2Rα(s)

3 (s → ∞),

we’ll calculate the IDS numerically in the following way.

(i) Generate a sample Poisson configuration with intensity 1 in the
box Q = [0, L]3.

(ii) Calculate the eigenvalue counting function NQ(−s2), by
calculating detA(s) where A(s) is given in Proposition 1.

(iii) Repeat (i) and (ii) many times, calculate the average, and divide
it by L3. Then we get E[NQ(−s2)]/L3 ≑ N(−s2).

This time we take L = 5, and repeat the tests 10000 times. We show
the result in the following slides.
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Numerical result (α = 0.0, 10000 tests)
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Numerical result (α = 0.5, 10000 tests)
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Numerical result (α = −0.5, 10000 tests)
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Conjecture for d = 2 (1)

Conjecture 4
Let d = 2. Suppose that α is a constant sequence, and Yω is the
Poisson configuration with intensity measure ρdx, ρ > 0. Let N(λ)
be the corresponding IDS for −∆α,Yω . Then we have

N(−s2) =
π

2
ρRα(s)

2 +O(s−8+ϵ) (s → ∞), (4)

for every 0 < ϵ < 4, where Rα(s) is the solution of

2πα + γE + log
s

2
−K0(sR) = 0, (5)

where γE is the Euler constant, and K0 is 0-th order modified Bessel
function of the 2nd kind.
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Conjecture for d = 2 (2)

The modified Bessel function comes from the integral kernel
(−∆+ s2)−1(x, y) in R2. The equation (5) again comes from the
eigenvalue equation for −∆α,Y in R2 for #Y = 2.

An asymptotic analysis of (5) tells us

Rα(s) = O(s−2) (s → ∞).

So (4) means

N(−s2) = O(s−4) (s → ∞) ⇔ N(λ) = O(|λ|−2) (λ → −∞).

Conjecture 4 seems to be proved similarly (the detail is not
completely checked yet). The numerical analysis below also supports
Conjecture 4.
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Numerical result (Poisson point process)

Poisson point process
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The blue curve
(ratio) seems to
converge to 1 as
s → ∞, which
supports Conjec-
ture 4.
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Other point processes

When d = 2, we can simulate various point processes, and calculate
IDS for that model, by using spatstat library.

Below we simulate the following two models.

(1) Hard core point process on [0, 10]2, with hard core distance
R = 0.1.

(2) Determinantal point process on [0, 1]2 with Gaussian kernel,
intensity 100 and n-point correlation function

ρ(x1, . . . , xn) = det(R(xi, xj))
n
i,j=1,

R(x, y) = exp

(
−|x− y|2

α2

)
,

and multiply 10 to the points (scaling). We choose α = 0.05
(strong repulsion) and α = 0.001 (weak repulsion).
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Numerical result (Hard core point process)

Hard core point process
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is bounded
from below and
N(−s2) = 0 for
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distance of two
different points
≥ 0.1.
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Numerical result (Determinantal Point process)

Determinantal point process (alpha 0.05)
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Strong repulsion
α = 0.05. The
decay of IDS
seems faster than
the Poisson case.
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Numerical result (Determinantal Point process)

Determinantal point process (alpha 0.001)
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α = 0.001. For
small α, the
decay of IDS
seems closer to
the Poisson case,
at least for s ≤ 6.
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Strategy of Proof of Theorem 3

Recall the calculation of σ(−∆α,Y ) when d = 3 and #Y = 2. For
large s > 0, we find an eigenvalue ≑ −s2 of −∆α,Y if we find a very
close pair {y1, y2} ⊂ Y with |y1 − y2| = Rα(s) ∼ t0/s.

Thus the proof consists of the following two steps.

(i) For a cube QL = [0, L]3, calculate the expectation of the
number of pairs {y1, y2} ⊂ Y ∩QL with |y1 − y2| ≤ Rα(s).

(ii) Estimate the difference between the eigenvalue counting
function NQL

(−s2) and the number of pairs given in (i).

(i) is a problem in the probability theory, and has a definite answer in
the case of the Poisson point process.

(ii) can be solved by using Proposition 1, and an analysis of the
eigenvalue of the matrix A(s).
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Number of close pairs (1)

Let Yω be the Poisson configuration in Rd with intensity measure
ρdx. For y ∈ Yω and R > 0, let

ny(R) = #(Yω ∩By(R)), By(R) = {x; |x− y| < R}.

ny(R) is the number of Poisson points in the ball By(R). The point
y itself is counted, so ny(R) ≥ 1.

Roughly speaking, the number of pairs we need is expressed as

1

2
#{y ∈ Yω ∩QL ; ny(Rα(s)) = 2}.

Fortunately, the expectation of this number can be calculated
explicitly.
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Number of close pairs (2)

Proposition 5

Let d = 1, 2, 3, ..., and Yω be the Poisson configuration in Rd with
intensity measure ρdx, where ρ > 0 is a constant. For L > 0, let
QL = [0, L]d. Then, we have for n = 1, 2, 3, ...

E[#{y ∈ Yω ∩QL ; ny(R) = n}]
|QL|

=
1

(n− 1)!
|B0(R)|n−1ρne−ρ|B0(R)|.

In particular, when d = 3, n = 2, and R = Rα(s), we have

1

2

E[#{y ∈ Yω ∩QL ; ny(Rα(s)) = 2}]
|QL|

≑ 2πRα(s)
3

3
ρ2,

which is the first term in (4).
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Estimate of the remainder term

Lemma 6
Let d = 3. Let α is a constant sequence, Yω is the Poisson
configuration with intensity ρdx, where ρ > 0 is a constant. Then,
for every δ with 1/2 < δ < 1, and for every m > 0, there exist
constants R0 > 0 and C > 0 such that

E[NQL
(−(sα(R)−Rm))2]

≥ 1

2
E[#{y ∈ Yω ∩QL ; ny(R) = 2}]− CR6δ|QL|,

E[NQL
(−(sα(R) + Rm))2]

≤ 1

2
E[#{y ∈ Yω ∩QL ; ny(R) = 2}] + CR6δ|QL|,

for every 0 < R < R0 and every L > R−2.
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Further problems

1. Can we find the asymptotics of IDS for other point processes?
Especially, is there a result corresponding to Proposition 5? The
case of the determinantal process with Gaussian kernel seems
interesting.

2. For d = 3 and α < 0, the height of the jump of IDS N(−s2)
around s = −4πα (eigenvalue for one-point interaction)?
Asymptotics as α → −∞?

3. Anderson localization (dense pure point spectrum in (−∞, 0))?

4. Is there absolutely continuous spectrum in [E0,∞) for large
E0 > 0? (Delocalization conjecture, but very difficult...)
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