Stability of charge density waves in electron-phonon systems

Himeji Conference on Partial Differential Equations March. 5, 2024

Tadahiro Miyao

Dept. Math. Hokkaido Univ.

TABLE OF CONTENTS

- Part 1: Background
- ▶ Part 2: The Existence of Charge Density Waves as Long-Range Order
- Part 3: Enhancement of Charge Density Waves by Electron-Phonon Interaction

Based on:

T.M. "Stability of charge density waves in electron-phonon systems", To appear in Jour. Stat. Phys., arXiv:2303.05667

Part 1: Background

MOTIVATION

- Various phases are anticipated to emerge in many-electron systems. Eg. ferromagnetic phase, antiferromagnetic phase, charge density wave phase, Mott insulator, Luttinger liquid, Fermi liquid, etc..
- ▶ The mathematical justification of phase diagrams has only been partially achieved.
- Systems with electron-phonon interactions are typically more challenging to handle than ordinary many-electron systems, and there is little mathematical proof of phase diagrams for low-temperature phases.

History

- The original meaning of CDW refers to the periodic structure of charge with a period of 2*a* (where *a* is the lattice spacing) in one-dimensional electron systems. In 1954, H. Fröhlich¹ proposed this mechanism to theoretically explain superconductivity (which was incorrect as a theory of superconductivity).
- In the 1970s, CDWs were discovered in several one-dimensional conductors, and their behavior was experimentally and theoretically elucidated.²
- In present times, the term "charge density wave" is commonly used to describe the type of order depicted in the figure, even in multi-dimensional electron systems.

¹H. Fröhlich. On the Theory of Superconductivity: The One-Dimensional Case. Proceedings of the Royal Society A 223 (1154): 296–305.

²G. Grüner, Density Waves in Solids. Addison-Wesley, 1994.

Mathematical investigations of charge density waves

- ▶ D = 1: Lieb-Nachtergaele³, T.M.⁴, Gontier-Kouande-Sere⁵
- ▶ D ≥ 2: Macrius–Piguet⁶, Borgs–Jedrzejewski–Kotecky⁷, Borgs–Kotecky⁸, T.M. ⁹

³E. H. Lieb and B. Nachtergaele, Phys. Rev. B 51, 4777, 1995
⁴T. M., Rev. Math. Phys. Vol. 23, No. 07, pp. 749-822 (2011)
⁵D. Gontier, A. E. K. Kouande and E. Sere, A. H. Poincare, Vol. 24, pages 3945–3966, (2023)
⁶N. Macris and C.-A. Piguet, Phys. Rev. B 60, 13484 (1999)
⁷C Borgs, J Jedrzejewski, R Kotecky, J. Phys. A: Math. Gen. 29 733 (1999)
⁸C. Borgs, R. Kotecky, Comm. Math. Phys., Vol. 208, pages 575–604, (2000)
⁹T.M., J. Stat. Phys., Vol. 165, pages 225–245, (2016)

Part 2: The Existence of Charge Density Waves as Long-Range Order

MATHEMATICAL DESCRIPTION OF ELECTRONS

► Here I give a mathematical framework for describing electrons on finite lattice $\Lambda = \mathbb{Z}^d \cap [-L, L)^d$. A state of a single electron is represented by a unit vector in the Hilbert space

$$\ell^2(\Lambda \times \{\uparrow,\downarrow\}).$$

Since electrons are fermions, states of N electrons are expressed as vectors in the antisymmetric tensor product Hilbert space:

$$\mathfrak{F}_{\mathrm{e},N}(\Lambda) = \bigwedge^{N} \ell^2(\Lambda \times \{\uparrow,\downarrow\}).$$

It is more convenient to employ the fermionic Fock space to describe states with various numbers of electrons:

$$\mathfrak{F}_{\mathrm{e}}(\Lambda) = igoplus_{N=0}^{2|\Lambda|} \mathfrak{F}_{\mathrm{e},N}(\Lambda).$$

The creation and annihilation operators $\{c_{x,\sigma}, c_{x,\sigma}^* : x \in \Lambda, \sigma = \{\uparrow, \downarrow\}\}$ acting on $\mathfrak{F}_{\mathbf{e}}(\Lambda)$ will be needed to define various operators: ¹⁰

$$\{c_{x\sigma}, c_{y\tau}\} = 0 = \{c_{x\sigma}^*, c_{y\tau}^*\},\$$
$$\{c_{x\sigma}, c_{y\tau}^*\} = \delta_{xy}\delta_{\sigma\tau}.$$

Number operator of electrons:

$$\hat{n}_{x\sigma} = c_{x\sigma}^* c_{x\sigma}, \quad \hat{n}_x = \hat{n}_{x\uparrow} + \hat{n}_{x\downarrow}.$$

¹⁰A. Arai. Analysis on Fock Spaces and Mathematical Theory of Quantum Fields. WORLD SCIENTIFIC, Dec. 2016.

O. Bratteli and D. W. Robinson. Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium States. Models in Quantum Statistical Mechanics. Springer Berlin Heidelberg, 1997.

Phase diagram in classical systems

Toy model:
$$H_{\mathcal{C},\Lambda} = U \sum_{x \in \Lambda} \hat{n}_{x,\uparrow} \hat{n}_{x,\downarrow} + W \sum_{\langle x,y \rangle \in E_{\Lambda}} \hat{n}_{x} \hat{n}_{y} - \left(\mu + 2dW + \frac{U}{2}\right) \sum_{x \in \Lambda} \hat{n}_{x}.$$

- ► U, W, μ : real parameters.
- The family of number operators $\{\hat{n}_{x\sigma}\}$ consists of commuting operators, thus $H_{C,\Lambda}$ is a classical Hamiltonian.
- ▶ The ground state of $H_{C,\Lambda}$ varies depending on the values of the parameters. \rightarrow Phase diagram

FIGURE: Phase diagram of the ground states for $H_{C,\Lambda}$.

Order parameter and phase diagram

- Let $H_{C,\Lambda}^{(P)}$ be the Hamiltonian with the periodic boundary conditions imposed.
- ▶ \mathfrak{A}_{e} is the *-algebra generated by $\{c_{x,\sigma} : x \in \mathbb{Z}^{d}, \sigma \in \{\uparrow, \downarrow\}\}.$
- Given an observable $\Psi \in \mathfrak{A}_{e}$, the thermal expectation value of Ψ with respect to $H_{C,A}^{(P)}$ is defined as

$$\langle \Psi \rangle^{(\mathbf{P})}_{\beta,\mathbf{C},\Lambda} = \frac{\mathrm{Tr}\left[\Psi \,\mathrm{e}^{-\beta H^{(\mathbf{P})}_{\mathbf{C},\Lambda}}\right]}{Z^{(\mathbf{P})}_{\mathbf{C},\Lambda}}, \quad Z^{(\mathbf{P})}_{\mathbf{C},\Lambda} = \mathrm{Tr}\left[\mathrm{e}^{-\beta H^{(\mathbf{P})}_{\mathbf{C},\Lambda}}\right]$$

For any state $\langle \cdot \rangle$ on \mathfrak{A}_{e} , we define the staggered density as

$$\Delta_{\mathcal{C}} = \lim_{L \to \infty} \frac{1}{|\Lambda|} \sum_{x \in \Lambda} (-1)^x \langle \hat{n}_x \rangle.$$

When $\Delta_{\rm C} \neq 0$, a CDW emerges.

• $\Delta_{\rm C} = 0 (H_i, i = 0, 1, 2)$

CDW in itinerant electron systems

The extended Hubbard model:

$$H_{\mathrm{H},\Lambda} = \mathbf{T}_{\mathbf{\Lambda}} + H_{\mathrm{C},\Lambda}.$$

Here,

$$T_{\Lambda} = -t \sum_{\langle x, y \rangle \in E_{\Lambda}} \sum_{\sigma = \uparrow, \downarrow} (c_{x,\sigma}^* c_{y,\sigma} + c_{y,\sigma}^* c_{x,\sigma}).$$

Consider the electron hopping term as a quantum perturbation.

• It is logical to ask whether charge density waves are stable in the case $t \neq 0$.

Theorem 2.1 (Borgs and Kotecky(2000))

The charge density waves are stable, i.e., $\Delta_{\rm C} \neq 0$ in the parameter region:

$$S_{\mathbf{e},\varepsilon} = \left\{ (U,\mu) \in \mathbb{R}^2 : U < 2d(W-\varepsilon), \ |\mu| < 2d\min\left\{ W-\varepsilon, \ W-\varepsilon - \frac{U}{4d} \right\} \right\},\$$

if the temperature is low enough and $\varepsilon > 0$ and |t| are sufficiently small.

- The proof is based on the Pirogov–Sinai theory. Remark: The method of reflection positivity can cover the case where μ = 0 (half-filling system) only.
- ► The Pirogov–Sinai theory has emerged as a potent approach in classical statistical mechanics for delineating first-order phase transitions and coexistence of phases at low temperatures.^{II}
- Noteworthy research works that utilize the Pirogov–Sinai theory to many-electron systems include Borgs-Kotecký-Ueltschi(1996), Datta-Fernández-Fröhlich(1996), Borgs-Kotecký(2000).¹²

¹¹S. A. Pirogov and Y. G. Sinai, Theoretical and Mathematical Physics, 25(3):1185–1192, Dec. 1975. ¹²Borgs, C.; Kotecký, R.; Ueltschi, D. Comm. Math. Phys. 181 (1996), 409–446, Borgs, C.; Kotecký, R. Comm. Math. Phys. 208 (2000), 575–604, Datta, Nilanjana; Fernández, Roberto; Fröhlich, Jürg, J. Statist. Phys. 84 (1996), 455–534.

Part 3: Enhancement of Charge Density Waves by Electron-Phonon Interaction

The Holstein–Hubbard model:

$$H_{\Lambda} = H_{\mathrm{H},\Lambda} + g \sum_{x \in \Lambda} \hat{n}_x (b_x + b_x^*) + \omega_0 \sum_{x \in \Lambda} b_x^* b_x.$$

• H_A acts on the following Hilbert space:

$$\mathfrak{H}_{\Lambda} = \mathfrak{F}_{\mathrm{e}}(\Lambda) \otimes \mathfrak{F}_{\mathrm{p}}(\Lambda),$$

where $\mathfrak{F}_p(\Lambda)$ is the bosonic Fock space over $\ell^2(\Lambda)$:

$$\mathfrak{F}_{\mathbf{p}}(\Lambda) = \bigoplus_{n=0}^{\infty} \otimes_{\mathbf{s}}^{n} \ell^{2}(\Lambda);$$

 $\otimes_{s}^{n} \ell^{2}(\Lambda)$ stands for the *n*-fold symmetric tensor product of $\ell^{2}(\Lambda)$, with $\otimes_{s}^{0} \ell^{2}(\Lambda) = \mathbb{C}$.

The annihilation- and creation operators of phonons are denoted by b_x and b^{*}_x, respectively.

$$[b_x, b_y^*] = \delta_{x,y}, \quad [b_x, b_y] = 0.$$

- The phonons are assumed to be dispersionless with energy $\omega_0 > 0$.
- ▶ The parameter *g* is the strength of the electron-phonon interaction.
- Given $\Psi \in \mathfrak{A}_{e}$, the thermal expectation value of Ψ with respect to $H_{\Lambda}^{(P)}$ is defined as

$$\langle \Psi \rangle_{\beta,\Lambda}^{(\mathbf{P})} = \frac{\operatorname{Tr}\left[\Psi e^{-\beta H_{\Lambda}^{(\mathbf{P})}}\right]}{Z_{\Lambda}^{(\mathbf{P})}}, \quad Z_{\Lambda}^{(\mathbf{P})} = \operatorname{Tr}\left[e^{-\beta H_{\Lambda}^{(\mathbf{P})}}\right]$$

As before, we define the staggered density as

$$\Delta = \lim_{L \to \infty} \frac{1}{|\Lambda|} \sum_{x \in \Lambda} (-1)^x \langle \hat{n}_x \rangle. \tag{I}$$

• We can prove the existence of charge density waves in the following region:

$$\begin{split} S_{\mathrm{ep},\varepsilon} &= \left\{ (U,\mu) \in \mathbb{R}^2 : U < 2d(W-\varepsilon) + \frac{2g^2}{\omega_0}, \\ &|\mu| < 2d\min\left\{ W - \varepsilon, \ W - \varepsilon - \frac{U}{4d} + \frac{g^2}{2d\omega_0} \right\} \right\}, \end{split}$$

provided that |t| is small enough, ω_0 is large enough and at sufficiently low temperatures.

- ► $S_{e,\varepsilon} \subset S_{ep,\varepsilon} \rightsquigarrow$ The electron-phonon interaction has a significant stabilizing effect on the charge density waves.
- Such effects have been anticipated in theoretical physics based on numerical computations and discussions relying on certain approximation theories.

The spin operators, $(S_x^{(1)}, S_x^{(2)}, S_x^{(3)})$, at site x are defined to be

$$S_x^{(i)} = \frac{1}{2} \sum_{\sigma, \sigma' = \uparrow, \downarrow} c_{x,\sigma}^*(s^{(i)})_{\sigma, \sigma'} c_{x,\sigma}, \quad i = 1, 2, 3,$$

where $s^{(i)}$ (i = 1, 2, 3) are the Pauli matrices:

$$s^{(1)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ s^{(2)} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ s^{(3)} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $(s^{(i)})_{\sigma,\sigma'}$ represents the matrix elements of $s^{(i)}$, with the correspondence $\uparrow = 1, \downarrow = 2^{i_3}$.

¹³Under this convention, for example, $(s^{(1)})_{\uparrow,\uparrow} = (s^{(1)})_{1,1} = 0$ and $(s^{(1)})_{\uparrow,\downarrow} = (s^{(1)})_{1,2} = 1$.

٠

Theorem 3.1 (T.M., 2023)

Suppose that $0 < \varepsilon < W$ and $(U, \mu) \in S_{ep,\varepsilon}$. There exist certain constants $0 < \beta_0 < \infty, 0 < \omega_* < \infty$ and $0 < t_0 < \infty$, such that, if $\beta \ge \beta_0, \omega_0 \ge \omega_*$ and $|t| \le t_0$, then the following (i)-(iii) hold:

(i) Given an arbitrary local observable $\Psi \in \mathfrak{A}_{e}$, the infinite volume limit:

$$\langle \Psi \rangle_{\beta}^{(\mathrm{P})} = \lim_{L \to \infty} \langle \Psi \rangle_{\beta,\Lambda}^{(\mathrm{P})}$$

converges. The state $\langle \cdot \rangle_{\beta}^{(P)}$ on \mathfrak{A}_{e} defined in this way can be represented by the convex combination of two pure states:

$$\langle \Psi \rangle_{\beta}^{(\mathrm{P})} = \frac{1}{2} \langle \Psi \rangle_{\beta}^{(+)} + \frac{1}{2} \langle \Psi \rangle_{\beta}^{(-)}.$$

The states $\langle \cdot \rangle_{\beta}^{(\pm)}$ describe charge density waves:

$$\langle \hat{n}_x \rangle_{\beta}^{(+)} = \rho + (-1)^x \Delta, \quad \langle \hat{n}_x \rangle_{\beta}^{(-)} = \rho - (-1)^x \Delta.$$
Here, $\Delta^{(+)} = -\Delta^{(-)} = \Delta > 0$, where $\Delta^{(+)}$ and $\Delta^{(-)}$ are staggered densities defined with respect to states $\langle \cdot \rangle_{\beta}^{(\pm)}$ in equation (1). Additionally, ρ is given as
$$\rho = \lim_{L \to \infty} \frac{1}{|\Lambda|} \sum_{x \in \Lambda} \langle \hat{n}_x \rangle_{\beta}^{(+)}$$
and coincides with the density associated with $\langle \cdot \rangle_{\beta}^{(-)}$.

2/3

Theorem 3.2 (Cont'd)

- (ii) No magnetic order exists. Namely, $\langle S_x^{(i)} \rangle_{\beta}^{(\pm)} = 0 \ (i = 1, 2, 3)$ holds for every $x \in \mathbb{Z}^d$.
- (iii) The two-point correlation function concerning arbitrary local observables $\Psi, \Phi \in \mathfrak{A}_{e}$ decays exponentially. Namely, there are constants $C_{\Psi,\Phi} > 0$ and $\xi_{\ell} > 0$ such that

$$\left| \langle \Psi \Phi \rangle_{\beta}^{(\pm)} - \langle \Psi \rangle_{\beta}^{(\pm)} \langle \Phi \rangle_{\beta}^{(\pm)} \right| \le C_{\Psi, \Phi} \exp \left\{ -\frac{\operatorname{dist}(\operatorname{supp} \Psi, \operatorname{supp} \Phi)}{\xi_{\ell}} \right\},$$

where, for any two finite subsets A and B of \mathbb{Z}^d , the distance between A and B is defined as $\operatorname{dist}(A, B) = \min\{||x - y|| : x \in A, y \in B\}$.

Outline of the proof

▶ HH Hamiltonian:

$$H_{\Lambda} = -t \sum_{\sigma} \sum_{\langle x; y \rangle} c^*_{x,\sigma} c_{y,\sigma} + H_{\mathcal{C},\Lambda} + g \sum_{x \in \Lambda} \hat{n}_x (b_x + b^*_x) + \omega_0 N_{\mathcal{P},\Lambda}$$

 \rightsquigarrow Lang–Firsov transformation:

$$H_{\Lambda} = -t \sum_{\sigma} \sum_{\langle x; y \rangle} \mathbf{e}^{\mathbf{i} \boldsymbol{\Phi}_{x,y}} c_{x,\sigma}^* c_{y,\sigma} + H_{\mathbf{C},\Lambda}^{(\text{eff})} + \omega_0 N_{\mathbf{p},\Lambda}$$

where

$$\begin{split} \varPhi_{x,y} &= -\frac{\sqrt{2}g}{\omega_0}(q_x - q_y), \quad q_x = \frac{1}{\sqrt{2}}\overline{(b_x + b_x^*)}, \\ H_{\mathcal{C},\Lambda}^{(\text{eff})} &= U_{\text{eff}} \sum_{x \in \Lambda} n_{x,\uparrow} n_{x,\downarrow} + W \sum_{\langle x,y \rangle} n_x n_y - \left(\mu + 2dW + \frac{U_{\text{eff}}}{2}\right) \sum_{x \in \Lambda} n_x, \\ U_{\text{eff}} &= U - \frac{2g^2}{\omega_0}. \end{split}$$

 \rightsquigarrow The partition function can be represented as a contour model on the (d+1)-dimensional spacetime $\mathbb{T}_A := [-L, L-1]^d \times [0, \beta]$:¹⁴

$$Z_{\ell,\Lambda} = \sum_{\{Y_1,\dots,Y_n\}} e^{-\tilde{\beta}\sum_{\ell} e_{\ell}|V_{\ell}|} \prod_{i=1}^n \rho(Y_i)$$

~> The Pirogov–Sinai theory can be applied.

¹⁴In the case of classical systems such as the Ising model, the partition function can be represented by a contour model in *d*-dimensional space.

Difficulties:

• The construction of the contour model is complex.

• Existing methods cannot be applied due to the non-conservation of the boson particle number.

 \leadsto It is challenging to control $\rho(Y).$

 \rightsquigarrow By utilizing explicit formulas for correlation functions in quantum field theory, it becomes possible to evaluate $\rho(Y)$.

Theorem 3.3 (T.M. (2023))

Suppose that $0 < \varepsilon < W$ and $(U, \mu) \in S_{ep,\varepsilon}$. There exist certain constants $0 < \beta_0 < \infty, 0 < \omega_* < \infty$ and $0 < t_0 < \infty$, such that, if $\beta \ge \beta_0, \omega_0 \ge \omega_*$ and $|t| \le t_0$, then the following holds:

$$\begin{split} |\rho(Y)| &\leq \mathrm{e}^{-(\tilde{\beta}e_{\mathrm{e}}+\tilde{\beta}c+\gamma)|\mathrm{supp}\,Y|},\\ \frac{\partial}{\partial\overline{\nu}_{i}}\rho(Y) \middle| &\leq \left(2\tilde{\beta}C_{0}+\frac{\mathrm{e}}{\mathrm{e}-1}+\frac{5}{\alpha\,\mathrm{e}^{1/2}}\right)|\mathrm{supp}\,Y|\,\mathrm{e}^{-(\tilde{\beta}e_{\mathrm{e}}+\tilde{\beta}c+\gamma_{\dagger})|\mathrm{supp}\,Y|}, \end{split}$$

where, γ , γ_{\dagger} and c are some positive numbers, and the symbols $\underline{\nu}_i$ represent the parameters U, μ, W, g .

Define the weight of the contour Y as follows:

$$W_{\ell}(Y) = \rho(Y) \operatorname{e}^{\tilde{\beta} e_{\ell}|Y|} \prod_{m=1}^{r} \frac{Z_{m,\operatorname{Int} mY}}{Z_{\ell,\operatorname{Int} mY}}.$$

 \rightsquigarrow The partition function can be expressed as follows:

$$Z_{\ell,\Lambda} = \mathrm{e}^{-\tilde{\beta}e_{\ell}|\Lambda|} \sum_{\{Y_1,\dots,Y_n\}\subset \mathbb{T}_{\Lambda}^n} \prod_{i=1}^n W_{\ell}(Y_i).$$

• The set $X = \{Y_1, \ldots, Y_n\}$ is called a cluster, if Y_1, \ldots, Y_n are "connected".

For each cluster
$$X = \{Y_1, \dots, Y_n\}$$
, set

$$\Psi(X) = \left\{\prod_{Y \in X} \frac{1}{n(Y)!}\right\} \varphi(Y_1, \dots, Y_n) \prod_{i=1}^n W_\ell(Y_i).$$

 \sim Cluster expansion:

$$\log Z_{\ell,\Lambda} = \sum_{X: \text{supp } X \subset \Lambda} \Psi(X).$$

PROPOSITION 3.5
The limit
$$\langle \Psi \rangle_{\ell} = \lim_{L \to \infty} \langle \Psi \rangle_{\ell,\Lambda}$$
 exists, and the following holds:
 $\langle \Psi \rangle_{\ell} = \sum_{\mathcal{Y}_{\Psi}} W_{\ell,\Psi}(\mathcal{Y}_{\Psi}) \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\{Y_1,\dots,Y_n\}} \left[\prod_{i=1}^{n} W_{\ell}(Y_i) \right] \varphi(\mathcal{Y}_{\Psi}, Y_1,\dots,Y_n).$

$$\begin{aligned} & \mathsf{PROPOSITION 3.6} \\ & \langle \Psi \Phi \rangle_{\ell} - \langle \Psi \rangle_{\ell} \langle \Phi \rangle_{\ell} \\ &= \sum_{\mathfrak{Y}_{\Psi}, \mathfrak{Y}_{\Phi}} W_{\ell,\Psi}(\mathfrak{Y}_{\Psi}) W_{\ell,\Phi}(\mathfrak{Y}_{\Phi}) \sum_{n=2}^{\infty} \frac{1}{(n-2)!} \sum_{\{Y_{3}, \dots, Y_{n}\}} \left[\prod_{i=3}^{n} W_{\ell}(Y_{i}) \right] \varphi(\mathfrak{Y}_{\Psi}, \mathfrak{Y}_{\Phi}, Y_{3}, \dots, Y_{n}) \\ & \text{From this, it follows that :} \\ & |\langle \Psi \Phi \rangle_{\ell} - \langle \Psi \rangle_{\ell} \langle \Phi \rangle_{\ell}| \leq C_{\Psi, \Phi} \exp\left\{ - \frac{\operatorname{dist}(\operatorname{supp} \Psi, \operatorname{supp} \Phi)}{\xi_{\ell}} \right\}. \end{aligned}$$

SUMMARY

- We provided a mathematical justification for the physicists' prediction that CDW stabilizes due to the electron-phonon interaction.
- ▶ The proof relied on the quantum Pirogov–Sinai theory.
- Consideration was limited to on-site electron-phonon interactions, but extension to finite range is possible (though the proof becomes more complex).
- There are many aspects of magnetic ordering that are not yet fully understood mathematically.

Thank you!