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Part 1: Background
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Motivation

! Various phases are anticipated to emerge in many-electron systems.
Eg. ferromagnetic phase, antiferromagnetic phase, charge density wave phase, Mott
insulator, Luttinger liquid, Fermi liquid, etc..

! The mathematical justification of phase diagrams has only been partially achieved.
! Systems with electron-phonon interactions are typically more challenging to handle

than ordinary many-electron systems, and there is little mathematical proof of phase
diagrams for low-temperature phases.
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History

! The original meaning of CDW refers to the periodic structure of charge with a period
of 2a (where a is the lattice spacing) in one-dimensional electron systems.
In 1954, H. Fröhlich1 proposed this mechanism to theoretically explain
superconductivity (which was incorrect as a theory of superconductivity).

! In the 1970s, CDWs were discovered in several one-dimensional conductors, and their
behavior was experimentally and theoretically elucidated.2

! In present times, the term “charge density wave” is commonly used to describe the
type of order depicted in the figure, even in multi-dimensional electron systems.

1H. Fröhlich. On the Theory of Superconductivity: The One-Dimensional Case. Proceedings of the Royal
Society A 223 (1154): 296–305.

2G. Grüner, Density Waves in Solids. Addison-Wesley, 1994.
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Mathematical investigations of charge density
waves
! D = 1: Lieb–Nachtergaele 3, T.M. 4, Gontier–Kouande–Sere5
! D ≥ 2: Macrius–Piguet6, Borgs–Jedrzejewski–Kotecky 7, Borgs–Kotecky8, T.M. 9
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3E. H. Lieb and B. Nachtergaele, Phys. Rev. B 51, 4777, 1995
4T.M., Rev. Math. Phys. Vol. 23, No. 07, pp. 749-822 (2011)
5D. Gontier, A. E. K. Kouande and E. Sere, A. H. Poincare, Vol. 24, pages 3945–3966, (2023)
6N.Macris and C.-A. Piguet, Phys. Rev. B 60, 13484 (1999)
7C Borgs, J Jedrzejewski, R Kotecky, J. Phys. A: Math. Gen. 29 733 (1999)
8C. Borgs, R. Kotecky, Comm. Math. Phys., Vol. 208, pages 575–604, (2000)
9T.M., J. Stat. Phys., Vol. 165, pages 225–245, (2016)
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Part 2: The Existence of Charge Density Waves as
Long-Range Order
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Mathematical description of electrons

! Here I give a mathematical framework for describing electrons on finite lattice
Λ = Zd ∩ [−L,L)d. A state of a single electron is represented by a unit vector in the
Hilbert space

ℓ2(Λ× {↑, ↓}).
! Since electrons are fermions, states ofN electrons are expressed as vectors in the

antisymmetric tensor product Hilbert space:

Fe,N (Λ) =
N∧

ℓ2(Λ× {↑, ↓}).

! It is more convenient to employ the fermionic Fock space to describe states with
various numbers of electrons:

Fe(Λ) =

2|Λ|⊕

N=0

Fe,N (Λ).
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! The creation and annihilation operators {cx,σ, c∗x,σ : x ∈ Λ,σ = {↑, ↓}} acting on
Fe(Λ)will be needed to define various operators: 10

{cxσ, cyτ} = 0 = {c∗xσ, c∗yτ},
{cxσ, c∗yτ} = δxyδστ .

! Number operator of electrons:

n̂xσ = c∗xσcxσ, n̂x = n̂x↑ + n̂x↓.

10A. Arai. Analysis on Fock Spaces andMathematical Theory of Quantum Fields. WORLD SCIENTIFIC,
Dec. 2016.
O. Bratteli and D.W. Robinson. Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium States.
Models in Quantum Statistical Mechanics. Springer Berlin Heidelberg, 1997.
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Phase diagram in classical systems

Toy model:

HC,Λ = U
∑

x∈Λ

n̂x,↑n̂x,↓ +W
∑

⟨x,y⟩∈EΛ

n̂xn̂y −
(
µ+ 2dW +

U

2

)∑

x∈Λ

n̂x.

! U,W, µ: real parameters.
! The family of number operators {n̂xσ} consists of commuting operators, thusHC,Λ

is a classical Hamiltonian.
! The ground state ofHC,Λ varies depending on the values of the parameters.
" Phase diagram
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Figure: Phase diagram of the ground states forHC,Λ.
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Order parameter and phase diagram

! LetH(P)
C,Λ be the Hamiltonian with the periodic boundary conditions imposed.

! Ae is the ∗-algebra generated by {cx,σ : x ∈ Zd,σ ∈ {↑, ↓}}.
! Given an observable Ψ ∈ Ae, the thermal expectation value of Ψ with respect to

H(P)
C,Λ is defined as

⟨Ψ⟩(P)
β,C,Λ =

Tr
[
Ψ e−βH(P)

C,Λ

]

Z(P)
C,Λ

, Z(P)
C,Λ = Tr

[
e−βH(P)

C,Λ

]
.

! For any state ⟨·⟩ onAe, we define the staggered density as

∆C = lim
L→∞

1

|Λ|
∑

x∈Λ

(−1)x⟨n̂x⟩.

When∆C ̸= 0, a CDW emerges.
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! ∆C = 1 (Se,0), ∆C = 1/2 (Se,±)
! ∆C = 0 (Hi, i = 0, 1, 2)
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CDW in itinerant electron systems

The extended Hubbard model:

HH,Λ = TΛ +HC,Λ.

Here,
TΛ = −t

∑

⟨x,y⟩∈EΛ

∑

σ=↑,↓
(c∗x,σcy,σ + c∗y,σcx,σ).

! Consider the electron hopping term as a quantum perturbation.
! It is logical to ask whether charge density waves are stable in the case t ̸= 0.
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Theorem 2.1 (Borgs andKotecky(2000))
The charge density waves are stable, i.e.,∆C ̸= 0 in the parameter region:

Se,ε =

{
(U, µ) ∈ R2 : U < 2d(W − ε), |µ| < 2dmin

{
W − ε, W − ε− U

4d

}}
,

if the temperature is low enough and ε > 0 and |t| are sufficiently small.

U/4d

µ/2d

W/2

W

−W

W/2

−W/2
Se,0
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! The proof is based on the Pirogov–Sinai theory.
Remark: The method of reflection positivity can cover the case where µ = 0
(half-filling system) only.

! The Pirogov–Sinai theory has emerged as a potent approach in classical statistical
mechanics for delineating first-order phase transitions and coexistence of phases at
low temperatures.11

! Noteworthy research works that utilize the Pirogov–Sinai theory to many-electron
systems include Borgs-Kotecký-Ueltschi(1996), Datta-Fernández-Fröhlich(1996),
Borgs-Kotecký(2000). 12

11S. A. Pirogov and Y. G. Sinai, Theoretical andMathematical Physics, 25(3):1185–1192, Dec. 1975.
12Borgs, C.; Kotecký, R.; Ueltschi, D. Comm. Math. Phys. 181 (1996), 409–446,

Borgs, C.; Kotecký, R. Comm. Math. Phys. 208 (2000), 575–604,
Datta, Nilanjana; Fernández, Roberto; Fröhlich, Jürg, J. Statist. Phys. 84 (1996), 455–534.
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Part 3: Enhancement of Charge Density Waves by
Electron-Phonon Interaction
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TheHolstein–Hubbard model

The Holstein–Hubbard model:

HΛ = HH,Λ + g
∑

x∈Λ

n̂x(bx + b∗x) + ω0

∑

x∈Λ

b∗xbx.

! HΛ acts on the following Hilbert space:

HΛ = Fe(Λ)⊗ Fp(Λ),

where Fp(Λ) is the bosonic Fock space over ℓ2(Λ):

Fp(Λ) =
∞⊕

n=0

⊗n
s ℓ

2(Λ);

⊗n
s ℓ

2(Λ) stands for the n-fold symmetric tensor product of ℓ2(Λ), with
⊗0

s ℓ
2(Λ) = C.

! The annihilation- and creation operators of phonons are denoted by bx and b∗x,
respectively.

[bx, b
∗
y] = δx,y, [bx, by] = 0.
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! The phonons are assumed to be dispersionless with energy ω0 > 0.
! The parameter g is the strength of the electron-phonon interaction.
! Given Ψ ∈ Ae, the thermal expectation value of Ψ with respect toH(P)

Λ is defined as

⟨Ψ⟩(P)
β,Λ =

Tr
[
Ψ e−βH(P)

Λ

]

Z(P)
Λ

, Z(P)
Λ = Tr

[
e−βH(P)

Λ

]
.

! As before, we define the staggered density as

∆ = lim
L→∞

1

|Λ|
∑

x∈Λ

(−1)x⟨n̂x⟩. (1)
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! We can prove the existence of charge density waves in the following region:

Sep,ε =

{
(U, µ) ∈ R2 :U < 2d(W − ε) +

2g2

ω0
,

|µ| < 2dmin

{
W − ε, W − ε− U

4d
+

g2

2dω0

}}
,

provided that |t| is small enough, ω0 is large enough and at sufficiently low
temperatures.

! Se,ε ⊂ Sep,ε"The electron-phonon interaction has a significant stabilizing effect
on the charge density waves.

! Such effects have been anticipated in theoretical physics based on numerical
computations and discussions relying on certain approximation theories.
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The spin operators, (S(1)
x , S(2)

x , S(3)
x ), at site x are defined to be

S(i)
x =

1

2

∑

σ,σ′=↑,↓
c∗x,σ(s

(i))σ,σ′cx,σ, i = 1, 2, 3,

where s(i) (i = 1, 2, 3) are the Pauli matrices:

s(1) =

(
0 1
1 0

)
, s(2) =

(
0 −i
i 0

)
, s(3) =

(
1 0
0 −1

)
.

(s(i))σ,σ′ represents the matrix elements of s(i), with the correspondence ↑= 1, ↓= 213.

13Under this convention, for example, (s(1))↑,↑ = (s(1))1,1 = 0 and (s(1))↑,↓ = (s(1))1,2 = 1.
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Theorem 3.1 (T.M., 2023)
Suppose that 0 < ε < W and (U, µ) ∈ Sep,ε. There exist certain constants
0 < β0 < ∞, 0 < ω∗ < ∞ and 0 < t0 < ∞, such that, if β ≥ β0,ω0 ≥ ω∗ and
|t| ≤ t0, then the following (i)-(iii) hold:
(i) Given an arbitrary local observable Ψ ∈ Ae, the infinite volume limit:

⟨Ψ⟩(P)
β = lim

L→∞
⟨Ψ⟩(P)

β,Λ

converges. The state ⟨·⟩(P)
β onAe defined in this way can be represented by the

convex combination of two pure states:

⟨Ψ⟩(P)
β =

1

2
⟨Ψ⟩(+)

β +
1

2
⟨Ψ⟩(−)

β .

The states ⟨·⟩(±)
β describe charge density waves:

⟨n̂x⟩(+)
β = ρ+ (−1)x∆, ⟨n̂x⟩(−)

β = ρ− (−1)x∆.

Here,∆(+) = −∆(−) = ∆ > 0, where∆(+) and∆(−) are staggered
densities defined with respect to states ⟨·⟩(±)

β in equation (1). Additionally, ρ is
given as

ρ = lim
L→∞

1

|Λ|
∑

x∈Λ

⟨n̂x⟩(+)
β

and coincides with the density associated with ⟨·⟩(−)
β .
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Theorem 3.2 (Cont’d)
(ii) Nomagnetic order exists. Namely, ⟨S(i)

x ⟩(±)
β = 0 (i = 1, 2, 3) holds for every

x ∈ Zd.
(iii) The two-point correlation function concerning arbitrary local observables

Ψ,Φ ∈ Ae decays exponentially. Namely, there are constantsCΨ,Φ > 0 and
ξℓ > 0 such that
∣∣∣⟨ΨΦ⟩(±)

β − ⟨Ψ⟩(±)
β ⟨Φ⟩(±)

β

∣∣∣ ≤ CΨ,Φ exp

{
−dist(suppΨ, suppΦ)

ξℓ

}
,

where, for any two finite subsetsA andB of Zd, the distance betweenA andB
is defined as dist(A,B) = min{∥x− y∥ : x ∈ A, y ∈ B}.
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Outline of the proof
! HHHamiltonian:

HΛ = −t
∑

σ

∑

⟨x;y⟩

c∗x,σcy,σ +HC,Λ + g
∑

x∈Λ

n̂x(bx + b∗x) + ω0Np,Λ

" Lang–Firsov transformation:

HΛ = −t
∑

σ

∑

⟨x;y⟩

eiΦx,yc∗x,σcy,σ +H(eff)
C,Λ + ω0Np,Λ

where

Φx,y = −
√
2g

ω0
(qx − qy), qx =

1√
2
(bx + b∗x),

H(eff)
C,Λ = Ueff

∑

x∈Λ

nx,↑nx,↓ +W
∑

⟨x,y⟩

nxny −
(
µ+ 2dW +

Ueff

2

)∑

x∈Λ

nx,

Ueff = U − 2g2

ω0
.
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"The partition function can be represented as a contour model on the
(d+ 1)-dimensional spacetime TΛ := [−L,L− 1]d × [0,β]:14

Zℓ,Λ =
∑

{Y1,...,Yn}

e−β̃
∑

ℓ eℓ|Vℓ|
n∏

i=1

ρ(Yi)

"The Pirogov–Sinai theory can be applied.

14In the case of classical systems such as the Ising model, the partition function can be represented by a contour
model in d-dimensional space.
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Difficulties:
! The construction of the contour model is complex.
! Existing methods cannot be applied due to the non-conservation of the boson particle

number.
" It is challenging to control ρ(Y ).
" By utilizing explicit formulas for correlation functions in quantum field theory, it
becomes possible to evaluate ρ(Y ).

Theorem 3.3 (T.M. (2023))
Suppose that 0 < ε < W and (U, µ) ∈ Sep,ε. There exist certain constants
0 < β0 < ∞, 0 < ω∗ < ∞ and 0 < t0 < ∞, such that, if β ≥ β0,ω0 ≥ ω∗ and
|t| ≤ t0, then the following holds:

|ρ(Y )| ≤ e−(β̃ee+β̃c+γ)|suppY |,
∣∣∣∣
∂

∂νi
ρ(Y )

∣∣∣∣ ≤
(
2β̃C0 +

e

e− 1
+

5

α e1/2

)
|suppY | e−(β̃ee+β̃c+γ†)|suppY |,

where, γ, γ† and c are some positive numbers, and the symbols νi represent the
parametersU, µ,W, g.
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! Define the weight of the contour Y as follows:

Wℓ(Y ) = ρ(Y ) eβ̃eℓ|Y |
r∏

m=1

Zm,IntmY

Zℓ,IntmY
.

"The partition function can be expressed as follows:

Zℓ,Λ = e−β̃eℓ|Λ|
∑

{Y1,...,Yn}⊂Tn
Λ

n∏

i=1

Wℓ(Yi).

! The setX = {Y1, . . . , Yn} is called a cluster, if Y1, . . . , Yn are “connected”.

P

cluster

t

^
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! For each clusterX = {Y1, . . . , Yn}, set

Ψ(X) =

{
∏

Y ∈X

1

n(Y )!

}
ϕ(Y1, . . . , Yn)

n∏

i=1

Wℓ(Yi).

"Cluster expansion:
logZℓ,Λ =

∑

X:suppX⊂Λ

Ψ(X).

Proposition 3.4
fℓ = − lim

L→∞

1

|Λ| logZℓ,Λ = eℓ −
1

β

∑

X:o∈suppX

1

|suppX|Ψ(X).
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Proposition 3.5
The limit ⟨Ψ⟩ℓ = lim

L→∞
⟨Ψ⟩ℓ,Λ exists, and the following holds:

⟨Ψ⟩ℓ =
∑

YΨ

Wℓ,Ψ (YΨ )
∞∑

n=0

1

n!

∑

{Y1,...,Yn}

[
n∏

i=1

Wℓ(Yi)

]
ϕ(YΨ , Y1, . . . , Yn).

Proposition 3.6
⟨ΨΦ⟩ℓ − ⟨Ψ⟩ℓ⟨Φ⟩ℓ

=
∑

YΨ ,YΦ

Wℓ,Ψ (YΨ )Wℓ,Φ(YΦ)
∞∑

n=2

1
(n− 2)!

∑

{Y3,...,Yn}

[
n∏

i=3

Wℓ(Yi)

]
ϕ(YΨ ,YΦ, Y3, . . . , Yn).

From this, it follows thatɿ

|⟨ΨΦ⟩ℓ − ⟨Ψ⟩ℓ⟨Φ⟩ℓ| ≤ CΨ,Φ exp

{
−dist(suppΨ, suppΦ)

ξℓ

}
.
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Summary

! We provided a mathematical justification for the physicists’ prediction that CDW
stabilizes due to the electron-phonon interaction.

! The proof relied on the quantum Pirogov–Sinai theory.
! Consideration was limited to on-site electron-phonon interactions, but extension to

finite range is possible (though the proof becomes more complex).
! There are many aspects of magnetic ordering that are not yet fully understood

mathematically.
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Thank you!
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