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Part 1: Background



MoTIvATION

» Various phases are anticipated to emerge in many—electron systems.
Eg. ferromagnetic phase, antiferromagnetic phase, charge density wave phase, Mott
insulator, Luttinger liquid, Fermi liquid, etc..

» The mathematical justification of phase diagrams has only been partially achieved.

> Systems with electron-phonon interactions are typically more challenging to handle
than ordinary many-electron systems, and there is little mathematical proof of phase
diagrams for low-temperature phases.
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History

» The original meaning of CDW refers to the periodic structure of charge with a period
of 2a (where a is the lattice spacing) in one-dimensional electron systems.
In 1954, H. Frohlich' proposed this mechanism to theoretically explain
superconductivity (which was incorrect as a theory of superconductivity).

» In the 19705, CDWs were discovered in several one-dimensional conductors, and their
behavior was experimentally and theoretically elucidated.”

> In present times, the term “charge density wave” is commonly used to describe the
type of order depicted in the figure, even in multi-dimensional electron systems.

'H. Fréhlich. On the Theory of Superconductivity: The One-Dimensional Case. Proceedings of the Royal
Society A 223 (1154): 296-30s.
*G. Griiner, Density Waves in Solids. Addison-Wesley, 1994.
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MATHEMATICAL INVESTIGATIONS OF CHARGE DENSITY

WAVES
» D = 1: Lieb—Nachtergaele 3, T.M. #, Gontier—Kouande—-Sere’
> D> 2: Macrius—Pigueté, Borgs—Jedrzejewski-Kotecky 7, Borgs—Kotecky®, T.M. ?
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3E. H. Lieb and B. Nachtergaele, Phys. Rev. B s1, 4777, 1995

4T. M., Rev. Math. Phys. Vol. 23, No. o7, pp. 749-822 (2011)

SD. Gontier, A. E. K. Kouande and E. Sere, A. H. Poincare, Vol. 24, pages 3945-3966, (2023)
N. Macris and C.-A. Piguet, Phys. Rev. B 60, 13484 (1999)

7C Borgs, J Jedrzejewski, R Kotecky, J. Phys. A: Math. Gen. 29 733 (1999)

8C. Borgs, R. Kotecky, Comm. Math. Phys., Vol. 208, pages 575-604, (2000)

9T.M., ]. Stat. Phys., Vol. 165, pages 225-24s, (2016)
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Part 2: The Existence of Charge Density Waves as
Long-Range Order



MATHEMATICAL DESCRIPTION OF ELECTRONS

» Here I give a mathematical framework for describing electrons on finite lattice
A=7%N[-L, L)% A state of asingle electron is represented by a unit vector in the
Hilbert space

CAx{1,1)).

> Since electrons are fermions, states of IV electrons are expressed as vectors in the
antisymmetric tensor product Hilbert space:

N
Fen(4) = N\ (A x {1, 1}).

> It is more convenient to employ the fermionic Fock space to describe states with
various numbers of electrons:

2|4

Fe(4) = P Fen(4).
N=0
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» The creation and annihilation operators {¢; ¢, ¢y , : ¢ € A, 0 = {1, ]} } acting on
Fe(A) will be needed to define various operators:

{CfﬂT’cyT} =0= {0:7076;7'}7

"
{CJEO', qu—} = 6wy60‘r-
> Number operator of electrons:

A A .
Ngo = CpoCaoy Mo = Mgt + Ny

'°A. Arai. Analysis on Fock Spaces and Mathematical Theory of Quantum Fields. WORLD SCIENTIFIC,
Dec. 2016.
O. Bratteli and D. W. Robinson. Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium States.
Models in Quantum Statistical Mechanics. Springer Berlin Heidelberg, 1997.
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PHASE DIAGRAM IN CLASSICAL SYSTEMS

Toy model:

Hoa=UY faghay+W Y iy — (u +2dW + g) > g

€A (z,y)EEA T€EA

> U, W, p: real parameters.

» The family of number operators {7, } consists of commuting operators, thus Hc 4
is a classical Hamiltonian.

» The ground state of Hc, 4 varies depending on the values of the parameters.
~+ Phase diagram
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F1cUrE: Phase diagram of the ground states for Hc 4.
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ORDER PARAMETER AND PHASE DIAGRAM

» Let H ((31?/)1 be the Hamiltonian with the periodic boundary conditions imposed.
> 2, is the *-algebra generated by {c, , : © € Z%, o € {1,]}}.

> Given an observable ¥ € 2, the thermal expectation value of ¥ with respect to

H, éP/)l is defined as
(P)
Tr [w e—ﬁHc,A}
- P

P
¢\
> For any state (-) on 2, we define the staggered density as

1
Ac= lim — 3 (=1)%(f,).

When A # 0,2 CDW emerges.
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» Ac =1(Sc0) Ac=1/2(Sc+)
> AC :O(Hia 7':0’172)




CDW IN ITINERANT ELECTRON SYSTEMS

The extended Hubbard model:
Hyg g =Ts+ Hc, .

Here,

Ty = —t Z Z (Cz,0Cy,0 T Cpp.5Ca,0)-

(z,y)eEA o=T,]

> Consider the electron hopping term as a quantum perturbation.

> Itis logical to ask whether charge density waves are stable in the case ¢ # 0.
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THEOREM 2.1 (BORGS AND KOTECKY(2000))

The charge density waves are stable, i.e., Ac # 0 in the parameter region:
&ﬁz{amoeR%U<2awufx“4<mmm{W—aJV—

if the temperature is low enough and € > 0 and |¢| are sufficiently small.

U
e — —

4d

}

1/ 2d

W

,S‘e'& W/2
Se,o W2 w/2

-W

U/ad
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» The proof is based on the Pirogov-Sinai theory.

Remark: The method of reflection positivity can cover the case where ;1 = 0
(half-filling system) only.

» The Pirogov-Sinai theory has emerged as a potent approach in classical statistical
mechanics for delineating first-order phase transitions and coexistence of phases at
low temperatures.”

> Noteworthy research works that utilize the Pirogov-Sinai theory to many-electron
systems include Borgs-Kotecky-Ueltschi(1996), Datta-Fernandez-Frohlich(1996),
Borgs-Kotecky(2000). ™

"'S. A. Pirogov and Y. G. Sinai, Theoretical and Mathematical Physics, 25(3):1185-1192, Dec. 1975.
Borgs, C.; Kotecky, R.; Ueltschi, D. Comm. Math. Phys. 181 (1996), 409-446,

Borgs, C.; Kotecky, R. Comm. Math. Phys. 208 (2000), 575-604,

Datta, Nilanjana; Fernandez, Roberto; Frohlich, Jiirg, J. Statist. Phys. 84 (1996), 455-534-
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Part 3: Enhancement of Charge Density Waves by
Electron-Phonon Interaction



THE HOLSTEIN-HUBBARD MODEL

The Holstein—-Hubbard model:

Hy= HH7/1 —&-gZﬁx(bw + b;) “+ wo Z b:bl
zeAN rEA

> H 4 acts on the following Hilbert space:
bA == ‘SC(A) ® ‘Sp(A)a
where §},(A) is the bosonic Fock space over £2(A):

Fo(4) = Pl (4);
n=0

@I 0%(A) stands for the n-fold symmetric tensor product of £2(A), with
®%0%(A) = C.
» The annihilation- and creation operators of phonons are denoted by b, and b,
respectively.
bz, by] = iy [ba; by] = 0.
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» The phonons are assumed to be dispersionless with energy wo > 0.

P The parameter g is the strength of the electron-phonon interaction.

> Given ¥ € 2., the thermal expectation value of ¥ with respect to H /(11)) is defined as

Tr [W e_ﬁH(Ap)}

7

(D)5h = 2 = e

P As before, we define the staggered density as
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> We can prove the existence of charge density waves in the following region:

2 29
Sep,sz (U,,u) eR U<2d(W*E)+ R

U 2
|u|<2dmin{W—a,W—6—+ J }}

4d 2(1&]()

provided that [¢] is small enough, wy is large enough and at sufficiently low
temperatures.

» S C Sep,e ~ The electron-phonon interaction has a significant stabilizing effect
on the charge density waves.

P Such effects have been anticipated in theoretical physics based on numerical
computations and discussions relying on certain approximation theories.
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The spin operators, (Sg(cl), 53&2)7 53(53) ), at site  are defined to be

) 1 .
S£;>:5 > o (8D)eorCay, i=1,2,3
o0’ =11

where s(9 (i = 1,2, 3) are the Pauli matrices:

° _<1 o)’s _(i 0)’5 _<0 -1)

(S(i) )o,o" represents the matrix elements of sV with the correspondence T= 1, | = 2.

BUnder this convention, for example, (s(0)+ 4+ = (s(0)1,1 = 0and (s(M)4 | = (s(M)1 0 = 1.
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THEOREM 3.1 (T.M., 2023)
Suppose that 0 < ¢ < W and (U, ) € Sep, . There exist certain constants
0 < By <00,0 <wy <ooand0 <ty < oo, suchthat, if B > Bo,wo > w. and
[t] < to, then the following (i)-(iii) hold:
(i) Given an arbitrary local observable W € U, the infinite volume limit:

P . P
(D = lim (@)}

converges. The state <->E;P) on U, defined in this way can be represented by the
convex combination of two pure states:
py 1 1 _
@)5" = 5@57 + 3@,
The states <.>gi) describe charge density waves:

(ha) 57 = p+ (—1)7A, ()5 = p— (-1)°A.
Here, AY) = —A) = A > 0, where A and A are staggered

densities defined with respect to states < >( )i

given as

in equation (1). Additionally, p is

)G
= Tl ] - Z "o

and coincides with the density associated wztlo (- >( ),




THEOREM 3.2 (CONT’D)
(ii) No magnetic order exists. Namely, <S§Z)>(Bi) =0(i = 1,2, 3) bolds for every
x € Z%
(iii) The two-point correlation function concerning arbitvary local observables

U, ® € AU, decays exponentially. Namely, there are constants Cy g > 0 and
& > 0such that

&e

where, for any two finite subsets A and B of 7.2 the distance between A and B
isdefined as dist(A, B) = min{||lx —y|| : = € A,y € B}.

dist(supp ¥, supp @
@) — @) <¢>(ﬁi)’ < Cyopexp {_ (supp ¥, supp )}7
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OUTLINE OF THE PROOF
» HH Hamiltonian:

Hy=—tY Y ¢ cpotHont+gy  ialbe+b5)+woNpa
o (wy) z€A

~~ Lang-Firsov transformation:

A=t DT el oy + HEY + w0l s

where
V2g L 7y
U
Héeffl) = Uy Z Ny | + W Z Mgy — <u + 2dW + ;) Z Ng,
€A (z,y) €A
2 2
Ut =U — -2

wo
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~= The partition function can be represented as a contour model on the
(d 4 1)-dimensional spacetime Ty := [-L, L — l]d x [0, 8]

Zoa = Z e—Bzzeavzlﬁp(yi)

{(YiomYu} i=1

~= The Pirogov-Sinai theory can be applied.

&

T

"4In the case of classical systems such as the Ising model, the partition function can be represented by a contour

model in d-dimensional space.
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Difficulties:
» The construction of the contour model is complex.
> Existing methods cannot be applied due to the non-conservation of the boson particle
number.
~~ It is challenging to control p(Y).

~= By utilizing explicit formulas for correlation functions in quantum field theory, it
becomes possible to evaluate p(Y).

THEOREM 3.3 (T.M. (2023))

Suppose that 0 < ¢ < W and (U, p) € Sep . There exist certain constants
0 < By <00,0 <wy <ooandl <ty < 00, such that, if f > o, wo > Wy and
[t < to, then the following holds:

p(Y)] < e~ (BeetBet)lsupp Y]

‘ 6‘3 p(Y)‘ <2/3'Co+1+ ° >|suppY|e Grtibimlee,
Vi

where, v, Yy and ¢ are some positive numbers, and the symbols v; represent the
parameters U, i, W, g.
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> Define the weight of the contour Y as follows:

We(Y ﬁele Zm Zm,Int Y
e( ) 1__[1 ZEInt

~~ The partition function can be expressed as follows:
_ n
Zya=e Pl T T Wy
{(V1,..,Y, }CT? i=1

» Theset X = {Y1,...,Y, }iscalled acluster, if Y7, . .., Y, are “connected”.

P ﬂL Cluster
| o

=F

4
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» Foreach cluster X = {Y7,..., Y, },set

U(X) = { 11 n(ly)!}w(yl,...,yn)ﬂwe(m.

YeX

~= Cluster expansion:
logZea= ., U(X).
X:supp XCA

PROPOSITION 3.4

1 1 1
fzz— lim —long’A:eg—— 7\11()()
L—o00 |A| B X;oezs:upr |Supr‘
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PROPOSITION 3.5
The limit (W), = lim <W> ¢, A exists, and the following holds:

z_zwemz ] [Hm

leMYl,"'

Y,).

PROPOSITION 3.6

(TD) e — (V) e(D)e

Z Weo (Yo )We,s(Ys) Z ) Z [HWz ] Yo, Ys,Y3,..., Y

Yo, Yo "*2 {Y3,...,Y,} Li=3

From this, it follows that
dist(supp ¥, supp @)

(WD) — (B)e(@)e] < Caexp {— !

b




SUMMARY

> We provided a mathematical justification for the physicists’ prediction that CDW
stabilizes due to the electron-phonon interaction.

» The proof relied on the quantum Pirogov—Sinai theory.

» Consideration was limited to on-site electron-phonon interactions, but extension to
finite range is possible (though the proof becomes more complex).

» There are many aspects of magnetic ordering that are not yet fully understood
mathematically.
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Thank you!



