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Introduction
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Slowly decaying attractive potentials

We discuss the uniform resolvent estimates near zero energy for the
Schrodinger operator

H=-IA+V +q onH=L*R?

with d € N={1,2,...}. The potential V is slowly decaying and
attractive, and q is a short-range perturbation relative to V.
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Slowly decaying attractive potentials

We use notation (z) = (1 + x2)'/2.

Conditions for V' and ¢

Let V € C%(R?) be spherically symmetric, and there exist v, e € (0,2) and
¢, C' > 0 such that for any |a] <2

|0V (z)| < C(x>_”_|a‘, V(z) < —clx)™, x(VV(z)) < —-(2—¢€)V(zx).

In addition, let ¢ € L>(R%), and there exist v/ € (v,2] and C’ > 0 such
that
la(x)| < C'(z)~' /2.

Remark (Aim of this talk)

Nakamura' 94, Fournais-Skibsted’ 04, Richard’ 06 and Skibsted' 13
discussed the LAP for C*° slowly decaying attractive potentials. We
extend previous results to the C? potentials in the framework of an
appropriate Agmon-Hormander spaces.




Agmon-Hormander spaces

We introduce the Agmon-Hérmander spaces. We set r(x) = |z| and define
an effective time as

T()\,az):/ora()\,s)_lds; a(\, ) = (2max{\,0} — 2V (r))"/2.

The function 7 means the time of arrival at distance r from the origin for
classical orbit with energy A starting at » = 0 at time t = 0.
Moreover, we note that the following estimates hold for 7:

cr(r)”/Q <7(0,2) < CT’<7‘>V/2,

NV < v\ ) < C"(A)Y2r uniformly in X > Ag > 0.

From these estimates, we can understand that the scattering velocity of
particles corresponding to zero energy is slower than that of particles
corresponding to positive energy.
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Agmon-Hormander spaces

We define the Agmon-Hormander spaces associated with 7 as

= {v € Lk [¥llspy < oo}y 1¥lsey = D 2 I1La(N) ¢ lln,

neN

B*\) = {v € Ly [¥ls-n <o}, [[¥llgy = SEEQW/QHM(AWH%
Bi(N) = {w e B (); Tim 2721, (A ]lu = 0},
where we let

L\ =1({z € RY: 7(\ ) < 2}),
L,(\) =1({z e R%; 2"t < 7(\2) < 2"}) forn=2,3,...

with 1(S) being the characteristic function of a subset S C R
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Agmon-Hormander spaces

For any A € R, s > 1/2, the following relations for weighted L? spaces
and Agmon-Hormander spaces hold

L2y G B G Lijpy GHGLE 0, S BN G B (V) C L2,

=

where
L}, =(1)""H forseR.

The above relationship can be understood from the following inequality.
Recall
cr(r)”/Q <7(0,z) < Cr(r)”/Q,

N2 <7\ ) < C"(NTY2e uniformly in A > Ag > 0.
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Main results
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Rellich's theorem

First, we introduce Rellich’s theorem. This theorem is an important basis
for our approach.

Theorem 1 (Rellich’s theorem)

If ¢ € B(N\) with X > 0 satisfies
(H — X\)¢ =0 in the distributional sense,

then ¢ = 0. In particular, the self-adjoint realization of H on H does not
have non-negative eigenvalues.

It is known that Zero is always the accumulation point of negative
eigenvalues.
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LAP bounds

Next come the LAP bounds for the resolvent
R(z) = (H —2)"t € L(H) for z € p(H).
We define the region where the spectral parameter varies as follows:
Ii(pw)={z€C; 0<|z]<p, 0<targz<w}
for any p > 0 and w € (0, 7).

Theorem 2 (LAP bounds)

There exists C' > 0 such that for any z = A tip € T'1(p,w) and 1p € B(\)

[R(2)%ll8=(n) < Cllllgn-

In particular, the self-adjoint realization of H on H does not have the
singular continuous spectrum on [0, o).
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Radiation condition bounds and their applications

We set an asymptotic complex phase b:

oV

b=by,=+2(z—-V)Fi——-= for ze€ C\(—o0,0]

4(z—-V)

respectively, where 0, is the radial differential operator.
We also set for any p > 0

5 . 2—v VvV -—v 2+361, ot (it _
= min 1m 1n 1mn Tar
“pP 2(2 + I/)7 2+v’ 8 |z| =00 \AE[0,p]

)
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Radiation condition bounds and their applications

Next, we introduce the radiation condition bounds.

Theorem 3 (Radiation condition bounds for R(z))

For all 5 € [0, B.,) there exists C' > 0 such that for any
z=A%xipeTy(p,w) and o € (1) "PB(N)

s < ClITYP Y0y,

”Tﬁa_l(pr I bz)R(z)w‘

where p, = (—1)0,.
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Radiation condition bounds and their applications

By combining the LAP bounds and the radiation condition bounds, we
obtain the following theorem.

Corollary 4 (LAP)

For any s > 1/2 and v € (0,min{s — 1/2, 5. ,}) there exists C > 0 such
that for z,2' € Ty (p,w) or z,2' € T_(p,w)

1R7(2) = R(Z')IIB(L2 ,

2
s,min{Re z,Re z/}’Lfs,min{Re z,Re 2’}

)gcp—zn

The operator R(z) attains uniform limits as z € I'y+(p,w) — A € [0, p) in
B(Li)\, Lz—s,x) 0

R(A£1i0) = li R(z).
eI

These limit R(\ £10) belongs to B(B(X), B*(\)).
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Radiation condition bounds and their applications

Now we have the limiting resolvents R(\ +10), and the radiation condition
bounds extend to them.

Corollary 5 (Radiation condition bounds for R(A +10) )

For all 5 € [0, B.,,) there exists C' > 0 such that for any A € [0, p),
b e (1) PB())

70~ (or 5 b} RO 10} 15 3y < I -
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Radiation condition bounds and their applications

Finally we characterize the limiting resolvents R(A £ i0).

Corollary 6 (Sommerfeld's uniqueness theorem)

Let \>0, ¢ € L2 . and ¢ € (1) "PB(\) with 3 € [0,8.) Then

loc

¢ = R(A £1i0)%y holds iff both of the following conditions hold:
(i) (H — X)¢ = in the distributional sense.

(ii) ¢ € (T)PB*()\) and aL(p, F b)) € (1) PBL(N).
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Classical mechanics
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Classical mechanics

We discuss the classical mechanics for the classical Hamiltonian
1.2
H(z,p) = 5p° + V().
Here we try to understand rolls of the effective time.

Proposition

If (z(t),p(t)) is a classical orbit of nonnegative energy A > 0 with positive
radial momentum at ¢t = 0;

pr(0) := [2(0)|~'2(0) - p(0) > 0,

then for any t > 0

(A, z(t) > a(X, 2(0) " 1p.(0)t + (N, 2(0)).

From this Proposition, it is indicated that the physical quantity 7 is

increasing with respect to ¢ as time passes.
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Proof of Proposition
It suffices to show that

&\ z(t) > 0.

Below we would like to avoid explicit t-derivatives to motivate the later

stationary approach to the quantum mechanics. For that we employ the
Poisson brackets. Let

and introduce a classical observable A as

A=Dr={H1}=a'p,.
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We compute
D?r ={H, A} =a 30, V)p2 +a 'p- (V*r)p— a1 (V).

Using Condition for V, the law of conservation of energy and the convexity
V2r >0, we can proceed as

D*r > a (0 V)p; + (0,V)p - (rV2r)p+ (2A — €V)p - (VPr)p — a®(9,V)]
=a?[2A—eV)p- (V2r)p+2(8,V)(H — N)]
> 0.

This completes the proof.

To prove our main result, we evaluate the quantization of the Poisson
bracket between H and A.
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Outline of proof
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Outline of proof of LAP bounds

We only sketch the proof of LAP bounds. The proof depends on a
commutator argument.

Theorem (LAP bounds)

There exists C' > 0 such that for any z € 'y (p,w) and ¢ € B(\)

1R(2)¢|

B+ < CllYlly-

Let us introduce
A=i[H, 7] = Re(a 'p,); pr = —i0,.

We also choose a cut off function y € C§°(RY) with support in {T > 1}.
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Outline of proof of LAP bounds

We use a weight function of the form
© = X0,

where
7/R
9:/ (1+s) ' ds=0"1-(1+7/R)°]; §>0, R>1.
0

We are going to compute and bound a distorted commutator
Im(AO(H — 2)),
and we obtain a key estimate to prove LAP bounds. Thus the LAP bounds

holds.
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Thank you for your attention
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