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Introduction
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Slowly decaying attractive potentials

We discuss the uniform resolvent estimates near zero energy for the
Schrödinger operator

H = −1
2∆+ V + q on H = L2(Rd)

with d ∈ N = {1, 2, . . .}. The potential V is slowly decaying and
attractive, and q is a short-range perturbation relative to V .
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Slowly decaying attractive potentials

We use notation ⟨x⟩ = (1 + x2)1/2.

Conditions for V and q

Let V ∈ C2(Rd) be spherically symmetric, and there exist ν, ϵ ∈ (0, 2) and
c, C > 0 such that for any |α| ≤ 2

|∂αV (x)| ≤ C⟨x⟩−ν−|α|, V (x) ≤ −c⟨x⟩−ν , x·(∇V (x)) ≤ −(2−ϵ)V (x).

In addition, let q ∈ L∞(Rd), and there exist ν ′ ∈ (ν, 2] and C ′ > 0 such
that

|q(x)| ≤ C ′⟨x⟩−1−ν′/2.

Remark (Aim of this talk)

Nakamura’ 94, Fournais-Skibsted’ 04, Richard’ 06 and Skibsted’ 13
discussed the LAP for C∞ slowly decaying attractive potentials. We
extend previous results to the C2 potentials in the framework of an
appropriate Agmon-Hörmander spaces.
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Agmon-Hörmander spaces

We introduce the Agmon-Hörmander spaces. We set r(x) = |x| and define
an effective time as

τ(λ, x) =

∫ r

0
a(λ, s)−1 ds; a(λ, r) = (2max{λ, 0} − 2V (r))1/2.

The function τ means the time of arrival at distance r from the origin for
classical orbit with energy λ starting at r = 0 at time t = 0.
Moreover, we note that the following estimates hold for τ :

cr⟨r⟩ν/2 ≤ τ(0, x) ≤ Cr⟨r⟩ν/2,

c′⟨λ⟩−1/2r ≤ τ(λ, x) ≤ C ′⟨λ⟩−1/2r uniformly in λ ≥ λ0 > 0.

From these estimates, we can understand that the scattering velocity of
particles corresponding to zero energy is slower than that of particles
corresponding to positive energy.
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Agmon-Hörmander spaces

We define the Agmon-Hörmander spaces associated with τ as

B(λ) =
{
ψ ∈ L2

loc; ∥ψ∥B(λ) <∞
}
, ∥ψ∥B(λ) =

∑
n∈N

2n/2∥1n(λ)ψ∥H,

B∗(λ) =
{
ψ ∈ L2

loc; ∥ψ∥B∗(λ) <∞
}
, ∥ψ∥B∗(λ) = sup

n∈N
2−n/2∥1n(λ)ψ∥H,

B∗
0(λ) =

{
ψ ∈ B∗(λ); lim

n→∞
2−n/2∥1n(λ)ψ∥H = 0

}
,

where we let

11(λ) = 1
({
x ∈ Rd; τ(λ, x) < 2

})
,

1n(λ) = 1
({
x ∈ Rd; 2n−1 ≤ τ(λ, x) < 2n

})
for n = 2, 3, . . .

with 1(S) being the characteristic function of a subset S ⊂ Rd.
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Agmon-Hörmander spaces

For any λ ∈ R, s > 1/2, the following relations for weighted L2 spaces
and Agmon-Hörmander spaces hold

L2
s,λ ⊊ B(λ) ⊊ L2

1/2,λ ⊊ H ⊊ L2
−1/2,λ ⊊ B∗

0(λ) ⊊ B∗(λ) ⊊ L2
−s,λ,

where
L2
s,λ = ⟨τ⟩−sH for s ∈ R.

The above relationship can be understood from the following inequality.
Recall

cr⟨r⟩ν/2 ≤ τ(0, x) ≤ Cr⟨r⟩ν/2,

c′⟨λ⟩−1/2r ≤ τ(λ, x) ≤ C ′⟨λ⟩−1/2r uniformly in λ ≥ λ0 > 0.
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Main results

8 / 23



Rellich’s theorem

First, we introduce Rellich’s theorem. This theorem is an important basis
for our approach.

Theorem 1 (Rellich’s theorem)

If ϕ ∈ B∗
0(λ) with λ ≥ 0 satisfies

(H − λ)ϕ = 0 in the distributional sense,

then ϕ ≡ 0. In particular, the self-adjoint realization of H on H does not
have non-negative eigenvalues.

Remark

It is known that Zero is always the accumulation point of negative
eigenvalues.
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LAP bounds

Next come the LAP bounds for the resolvent

R(z) = (H − z)−1 ∈ L(H) for z ∈ ρ(H).

We define the region where the spectral parameter varies as follows:

Γ±(ρ, ω) =
{
z ∈ C; 0 < |z| < ρ, 0 < ± arg z < ω

}
for any ρ > 0 and ω ∈ (0, π).

Theorem 2 (LAP bounds)

There exists C > 0 such that for any z = λ± iµ ∈ Γ±(ρ, ω) and ψ ∈ B(λ)

∥R(z)ψ∥B∗(λ) ≤ C∥ψ∥B(λ).

In particular, the self-adjoint realization of H on H does not have the
singular continuous spectrum on [0,∞).
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Radiation condition bounds and their applications

We set an asymptotic complex phase b:

b = b±z =
√

2(z − V )∓ i
∂rV

4(z − V )
for z ∈ C\(−∞, 0]

respectively, where ∂r is the radial differential operator.
We also set for any ρ > 0

βc,ρ = min

{
2− ν

2(2 + ν)
,
ν ′ − ν

2 + ν
,
2 + 3ϵ

8
lim inf
|x|→∞

(
inf

λ∈[0,ρ]
τar−1

)}
> 0.
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Radiation condition bounds and their applications

Next, we introduce the radiation condition bounds.

Theorem 3 (Radiation condition bounds for R(z))

For all β ∈ [0, βc,ρ) there exists C > 0 such that for any
z = λ± iµ ∈ Γ±(ρ, ω) and ψ ∈ ⟨τ⟩−βB(λ)

∥τβa−1(pr ∓ bz)R(z)ψ∥B∗(λ) ≤ C∥⟨τ⟩βψ∥B(λ),

where pr = (−i)∂r.
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Radiation condition bounds and their applications

By combining the LAP bounds and the radiation condition bounds, we
obtain the following theorem.

Corollary 4 (LAP)

For any s > 1/2 and γ ∈ (0,min{s− 1/2, βc,ρ}) there exists C > 0 such
that for z, z′ ∈ Γ+(ρ, ω) or z, z

′ ∈ Γ−(ρ, ω)

∥R(z)−R(z′)∥B
(
L2
s,min{Re z,Re z′},L

2
−s,min{Re z,Re z′}

) ≤ C|z − z′|γ .

The operator R(z) attains uniform limits as z ∈ Γ±(ρ, ω) → λ ∈ [0, ρ) in
B(L2

s,λ, L
2
−s,λ) :

R(λ± i0) = lim
z∈Γ±(ρ,ω)→λ

R(z).

These limit R(λ± i0) belongs to B(B(λ),B∗(λ)).
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Radiation condition bounds and their applications

Now we have the limiting resolvents R(λ± i0), and the radiation condition
bounds extend to them.

Corollary 5 (Radiation condition bounds for R(λ± i0) )

For all β ∈ [0, βc,ρ) there exists C > 0 such that for any λ ∈ [0, ρ),
ψ ∈ ⟨τ⟩−βB(λ)

∥τβa−1(pr ∓ bλ)R(λ± i0)ψ∥B∗(λ) ≤ C∥⟨τ⟩βψ∥B(λ).
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Radiation condition bounds and their applications

Finally we characterize the limiting resolvents R(λ± i0).

Corollary 6 (Sommerfeld’s uniqueness theorem)

Let λ ≥ 0, ϕ ∈ L2
loc and ψ ∈ ⟨τ⟩−βB(λ) with β ∈ [0, βc,λ) Then

ϕ = R(λ± i0)ψ holds iff both of the following conditions hold:

(i) (H − λ)ϕ = ψ in the distributional sense.

(ii) ϕ ∈ ⟨τ⟩βB∗(λ) and a−1(pr ∓ bλ)ϕ ∈ ⟨τ⟩−βB∗
0(λ).
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Classical mechanics
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Classical mechanics

We discuss the classical mechanics for the classical Hamiltonian

H(x, p) = 1
2p

2 + V (x).

Here we try to understand rolls of the effective time.

Proposition

If (x(t), p(t)) is a classical orbit of nonnegative energy λ ≥ 0 with positive
radial momentum at t = 0;

pr(0) := |x(0)|−1x(0) · p(0) > 0,

then for any t ≥ 0

τ(λ, x(t)) ≥ a(λ, x(0))−1pr(0)t+ τ(λ, x(0)).

From this Proposition, it is indicated that the physical quantity τ is
increasing with respect to t as time passes.
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Effective time

Proof of Proposition
It suffices to show that

d2

dt2
τ(λ, x(t)) ≥ 0.

Below we would like to avoid explicit t-derivatives to motivate the later
stationary approach to the quantum mechanics. For that we employ the
Poisson brackets. Let

D = d
dt = {H, ·},

and introduce a classical observable A as

A = Dτ = {H, τ} = a−1pr.
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Effective time

We compute

D2τ = {H,A} = a−3(∂rV )p2r + a−1p · (∇2r)p− a−1(∂rV ).

Using Condition for V , the law of conservation of energy and the convexity
∇2r ≥ 0, we can proceed as

D2τ ≥ a−3
[
(∂rV )p2r + (∂rV )p · (r∇2r)p+ (2λ− ϵV )p · (∇2r)p− a2(∂rV )

]
= a−3

[
(2λ− ϵV )p · (∇2r)p+ 2(∂rV )(H − λ)

]
≥ 0.

This completes the proof.
To prove our main result, we evaluate the quantization of the Poisson
bracket between H and A.
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Outline of proof
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Outline of proof of LAP bounds

We only sketch the proof of LAP bounds. The proof depends on a
commutator argument.

Theorem (LAP bounds)

There exists C > 0 such that for any z ∈ Γ±(ρ, ω) and ψ ∈ B(λ)

∥R(z)ψ∥B∗(λ) ≤ C∥ψ∥B(λ).

Let us introduce

A = i[H, τ ] = Re(a−1pr); pr = −i∂r.

We also choose a cut off function χ ∈ C∞
0 (Rd) with support in {τ ≥ 1}.
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Outline of proof of LAP bounds

We use a weight function of the form

Θ = χθ,

where

θ =

∫ τ/R

0
(1 + s)−1−δ ds = δ−1

[
1− (1 + τ/R)−δ

]
; δ > 0, R ≥ 1.

We are going to compute and bound a distorted commutator

Im(AΘ(H − z)),

and we obtain a key estimate to prove LAP bounds. Thus the LAP bounds
holds.
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Thank you for your attention
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