Low energy LAP for slowly decaying attractive potentials

T. Tagawa
joint work with K. Ito

The University of Tokyo
March 4, 2024

Introduction

Slowly decaying attractive potentials

We discuss the uniform resolvent estimates near zero energy for the Schrödinger operator

$$
H=-\frac{1}{2} \Delta+V+q \text { on } \mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)
$$

with $d \in \mathbb{N}=\{1,2, \ldots\}$. The potential V is slowly decaying and attractive, and q is a short-range perturbation relative to V.

Slowly decaying attractive potentials

We use notation $\langle x\rangle=\left(1+x^{2}\right)^{1 / 2}$.

Conditions for V and q

Let $V \in C^{2}\left(\mathbb{R}^{d}\right)$ be spherically symmetric, and there exist $\nu, \epsilon \in(0,2)$ and $c, C>0$ such that for any $|\alpha| \leq 2$
$\left|\partial^{\alpha} V(x)\right| \leq C\langle x\rangle^{-\nu-|\alpha|}, \quad V(x) \leq-c\langle x\rangle^{-\nu}, \quad x \cdot(\nabla V(x)) \leq-(2-\epsilon) V(x)$.
In addition, let $q \in L^{\infty}\left(\mathbb{R}^{d}\right)$, and there exist $\nu^{\prime} \in(\nu, 2]$ and $C^{\prime}>0$ such that

$$
|q(x)| \leq C^{\prime}\langle x\rangle^{-1-\nu^{\prime} / 2}
$$

Remark (Aim of this talk)

Nakamura' 94, Fournais-Skibsted' 04, Richard' 06 and Skibsted' 13 discussed the LAP for C^{∞} slowly decaying attractive potentials. We extend previous results to the C^{2} potentials in the framework of an appropriate Agmon-Hörmander spaces.

Agmon-Hörmander spaces

We introduce the Agmon-Hörmander spaces. We set $r(x)=|x|$ and define an effective time as

$$
\tau(\lambda, x)=\int_{0}^{r} a(\lambda, s)^{-1} \mathrm{~d} s ; \quad a(\lambda, r)=(2 \max \{\lambda, 0\}-2 V(r))^{1 / 2}
$$

The function τ means the time of arrival at distance r from the origin for classical orbit with energy λ starting at $r=0$ at time $t=0$. Moreover, we note that the following estimates hold for τ :

$$
\begin{gathered}
c r\langle r\rangle^{\nu / 2} \leq \tau(0, x) \leq C r\langle r\rangle^{\nu / 2}, \\
c^{\prime}\langle\lambda\rangle^{-1 / 2} r \leq \tau(\lambda, x) \leq C^{\prime}\langle\lambda\rangle^{-1 / 2} r \text { uniformly in } \lambda \geq \lambda_{0}>0 .
\end{gathered}
$$

From these estimates, we can understand that the scattering velocity of particles corresponding to zero energy is slower than that of particles corresponding to positive energy.

Agmon-Hörmander spaces

We define the Agmon-Hörmander spaces associated with τ as

$$
\begin{aligned}
\mathcal{B}(\lambda) & =\left\{\psi \in L_{\mathrm{loc}}^{2} ;\|\psi\|_{\mathcal{B}(\lambda)}<\infty\right\}, \\
\mathcal{B}^{*}(\lambda) & =\left\{\psi \in L_{\mathrm{loc}}^{2} ;\|\psi\|_{\mathcal{B}^{*}(\lambda)}=\sum_{n \in \mathbb{N}} 2^{n / 2}\left\|1_{n}(\lambda) \psi\right\|_{\mathcal{H}},\right. \\
\mathcal{B}_{0}^{*}(\lambda) & =\left\{\psi \in \mathcal{B}^{*}(\lambda) ; \lim _{n \rightarrow \infty} 2^{-n / 2}\left\|1_{n}(\lambda) \psi\right\|_{\mathcal{H}}=0\right\}
\end{aligned}
$$

where we let

$$
\begin{aligned}
& 1_{1}(\lambda)=1\left(\left\{x \in \mathbb{R}^{d} ; \tau(\lambda, x)<2\right\}\right), \\
& 1_{n}(\lambda)=1\left(\left\{x \in \mathbb{R}^{d} ; 2^{n-1} \leq \tau(\lambda, x)<2^{n}\right\}\right) \text { for } n=2,3, \ldots
\end{aligned}
$$

with $1(S)$ being the characteristic function of a subset $S \subset \mathbb{R}^{d}$.

Agmon-Hörmander spaces

For any $\lambda \in \mathbb{R}, s>1 / 2$, the following relations for weighted L^{2} spaces and Agmon-Hörmander spaces hold

$$
L_{s, \lambda}^{2} \subsetneq \mathcal{B}(\lambda) \subsetneq L_{1 / 2, \lambda}^{2} \subsetneq \mathcal{H} \subsetneq L_{-1 / 2, \lambda}^{2} \subsetneq \mathcal{B}_{0}^{*}(\lambda) \subsetneq \mathcal{B}^{*}(\lambda) \subsetneq L_{-s, \lambda}^{2}
$$

where

$$
L_{s, \lambda}^{2}=\langle\tau\rangle^{-s} \mathcal{H} \text { for } s \in \mathbb{R}
$$

The above relationship can be understood from the following inequality. Recall

$$
\operatorname{cr}\langle r\rangle^{\nu / 2} \leq \tau(0, x) \leq C r\langle r\rangle^{\nu / 2},
$$

$$
c^{\prime}\langle\lambda\rangle^{-1 / 2} r \leq \tau(\lambda, x) \leq C^{\prime}\langle\lambda\rangle^{-1 / 2} r \text { uniformly in } \lambda \geq \lambda_{0}>0
$$

Main results

Rellich's theorem

First, we introduce Rellich's theorem. This theorem is an important basis for our approach.

Theorem 1 (Rellich's theorem)
If $\phi \in \mathcal{B}_{0}^{*}(\lambda)$ with $\lambda \geq 0$ satisfies

$$
(H-\lambda) \phi=0 \text { in the distributional sense, }
$$

then $\phi \equiv 0$. In particular, the self-adjoint realization of H on \mathcal{H} does not have non-negative eigenvalues.

Remark

It is known that Zero is always the accumulation point of negative eigenvalues.

LAP bounds

Next come the LAP bounds for the resolvent

$$
R(z)=(H-z)^{-1} \in \mathcal{L}(\mathcal{H}) \text { for } z \in \rho(H)
$$

We define the region where the spectral parameter varies as follows:

$$
\Gamma_{ \pm}(\rho, \omega)=\{z \in \mathbb{C} ; 0<|z|<\rho, 0< \pm \arg z<\omega\}
$$

for any $\rho>0$ and $\omega \in(0, \pi)$.

Theorem 2 (LAP bounds)

There exists $C>0$ such that for any $z=\lambda \pm \mathrm{i} \mu \in \Gamma_{ \pm}(\rho, \omega)$ and $\psi \in \mathcal{B}(\lambda)$

$$
\|R(z) \psi\|_{\mathcal{B}^{*}(\lambda)} \leq C\|\psi\|_{\mathcal{B}(\lambda)}
$$

In particular, the self-adjoint realization of H on \mathcal{H} does not have the singular continuous spectrum on $[0, \infty)$.

Radiation condition bounds and their applications

We set an asymptotic complex phase b :

$$
b=b_{ \pm z}=\sqrt{2(z-V)} \mp \mathrm{i} \frac{\partial_{r} V}{4(z-V)} \quad \text { for } \quad z \in \mathbb{C} \backslash(-\infty, 0]
$$

respectively, where ∂_{r} is the radial differential operator.
We also set for any $\rho>0$

$$
\beta_{c, \rho}=\min \left\{\frac{2-\nu}{2(2+\nu)}, \frac{\nu^{\prime}-\nu}{2+\nu}, \frac{2+3 \epsilon}{8} \liminf _{|x| \rightarrow \infty}\left(\inf _{\lambda \in[0, \rho]} \tau a r^{-1}\right)\right\}>0
$$

Radiation condition bounds and their applications

Next, we introduce the radiation condition bounds.
Theorem 3 (Radiation condition bounds for $R(z)$)
For all $\beta \in\left[0, \beta_{c, \rho}\right)$ there exists $C>0$ such that for any
$z=\lambda \pm \mathrm{i} \mu \in \Gamma_{ \pm}(\rho, \omega)$ and $\psi \in\langle\tau\rangle^{-\beta} \mathcal{B}(\lambda)$

$$
\left\|\tau^{\beta} a^{-1}\left(p_{r} \mp b_{z}\right) R(z) \psi\right\|_{\mathcal{B}^{*}(\lambda)} \leq C\left\|\langle\tau\rangle^{\beta} \psi\right\|_{\mathcal{B}(\lambda)}
$$

where $p_{r}=(-\mathrm{i}) \partial_{r}$.

Radiation condition bounds and their applications

By combining the LAP bounds and the radiation condition bounds, we obtain the following theorem.

Corollary 4 (LAP)

For any $s>1 / 2$ and $\gamma \in\left(0, \min \left\{s-1 / 2, \beta_{c, \rho}\right\}\right)$ there exists $C>0$ such that for $z, z^{\prime} \in \Gamma_{+}(\rho, \omega)$ or $z, z^{\prime} \in \Gamma_{-}(\rho, \omega)$

$$
\left\|R(z)-R\left(z^{\prime}\right)\right\|_{\mathcal{B}\left(L_{s, \min \left\{\operatorname{Re} z, \operatorname{Re} z^{\prime}\right\}}^{2}, L_{-s, \min \left\{\operatorname{Re} z, \operatorname{Re} z^{\prime}\right\}}^{2}\right)} \leq C\left|z-z^{\prime}\right|^{\gamma}
$$

The operator $R(z)$ attains uniform limits as $z \in \Gamma_{ \pm}(\rho, \omega) \rightarrow \lambda \in[0, \rho)$ in $\mathcal{B}\left(L_{s, \lambda}^{2}, L_{-s, \lambda}^{2}\right)$:

$$
R(\lambda \pm \mathrm{i} 0)=\lim _{z \in \Gamma_{ \pm}(\rho, \omega) \rightarrow \lambda} R(z)
$$

These limit $R(\lambda \pm \mathrm{i} 0)$ belongs to $\mathcal{B}\left(\mathcal{B}(\lambda), \mathcal{B}^{*}(\lambda)\right)$.

Radiation condition bounds and their applications

Now we have the limiting resolvents $R(\lambda \pm \mathrm{i} 0)$, and the radiation condition bounds extend to them.

Corollary 5 (Radiation condition bounds for $R(\lambda \pm \mathrm{i} 0)$)

For all $\beta \in\left[0, \beta_{c, \rho}\right)$ there exists $C>0$ such that for any $\lambda \in[0, \rho)$, $\psi \in\langle\tau\rangle^{-\beta} \mathcal{B}(\lambda)$

$$
\left\|\tau^{\beta} a^{-1}\left(p_{r} \mp b_{\lambda}\right) R(\lambda \pm \mathrm{i} 0) \psi\right\|_{\mathcal{B}^{*}(\lambda)} \leq C\left\|\langle\tau\rangle^{\beta} \psi\right\|_{\mathcal{B}(\lambda)} .
$$

Radiation condition bounds and their applications

Finally we characterize the limiting resolvents $R(\lambda \pm \mathrm{i} 0)$.
Corollary 6 (Sommerfeld's uniqueness theorem)
Let $\lambda \geq 0, \phi \in L_{\text {loc }}^{2}$ and $\psi \in\langle\tau\rangle^{-\beta} \mathcal{B}(\lambda)$ with $\beta \in\left[0, \beta_{c, \lambda}\right)$ Then $\phi=R(\lambda \pm \mathrm{i} 0) \psi$ holds iff both of the following conditions hold:
(i) $(H-\lambda) \phi=\psi$ in the distributional sense.
(ii) $\phi \in\langle\tau\rangle^{\beta} \mathcal{B}^{*}(\lambda)$ and $a^{-1}\left(p_{r} \mp b_{\lambda}\right) \phi \in\langle\tau\rangle^{-\beta} \mathcal{B}_{0}^{*}(\lambda)$.

Classical mechanics

Classical mechanics

We discuss the classical mechanics for the classical Hamiltonian

$$
H(x, p)=\frac{1}{2} p^{2}+V(x)
$$

Here we try to understand rolls of the effective time.

Proposition

If $(x(t), p(t))$ is a classical orbit of nonnegative energy $\lambda \geq 0$ with positive radial momentum at $t=0$;

$$
p_{r}(0):=|x(0)|^{-1} x(0) \cdot p(0)>0
$$

then for any $t \geq 0$

$$
\tau(\lambda, x(t)) \geq a(\lambda, x(0))^{-1} p_{r}(0) t+\tau(\lambda, x(0))
$$

From this Proposition, it is indicated that the physical quantity τ is increasing with respect to t as time passes.

Effective time

Proof of Proposition

It suffices to show that

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \tau(\lambda, x(t)) \geq 0 .
$$

Below we would like to avoid explicit t-derivatives to motivate the later stationary approach to the quantum mechanics. For that we employ the Poisson brackets. Let

$$
D=\frac{\mathrm{d}}{\mathrm{~d} t}=\{H, \cdot\}
$$

and introduce a classical observable A as

$$
A=D \tau=\{H, \tau\}=a^{-1} p_{r}
$$

Effective time

We compute

$$
D^{2} \tau=\{H, A\}=a^{-3}\left(\partial_{r} V\right) p_{r}^{2}+a^{-1} p \cdot\left(\nabla^{2} r\right) p-a^{-1}\left(\partial_{r} V\right) .
$$

Using Condition for V, the law of conservation of energy and the convexity $\nabla^{2} r \geq 0$, we can proceed as

$$
\begin{aligned}
D^{2} \tau & \geq a^{-3}\left[\left(\partial_{r} V\right) p_{r}^{2}+\left(\partial_{r} V\right) p \cdot\left(r \nabla^{2} r\right) p+(2 \lambda-\epsilon V) p \cdot\left(\nabla^{2} r\right) p-a^{2}\left(\partial_{r} V\right)\right] \\
& =a^{-3}\left[(2 \lambda-\epsilon V) p \cdot\left(\nabla^{2} r\right) p+2\left(\partial_{r} V\right)(H-\lambda)\right] \\
& \geq 0
\end{aligned}
$$

This completes the proof.
To prove our main result, we evaluate the quantization of the Poisson bracket between H and A.

Outline of proof

Outline of proof of LAP bounds

We only sketch the proof of LAP bounds. The proof depends on a commutator argument.

Theorem (LAP bounds)

There exists $C>0$ such that for any $z \in \Gamma_{ \pm}(\rho, \omega)$ and $\psi \in \mathcal{B}(\lambda)$

$$
\|R(z) \psi\|_{\mathcal{B}^{*}(\lambda)} \leq C\|\psi\|_{\mathcal{B}(\lambda)}
$$

Let us introduce

$$
A=\mathrm{i}[H, \tau]=\operatorname{Re}\left(a^{-1} p_{r}\right) ; \quad p_{r}=-\mathrm{i} \partial_{r} .
$$

We also choose a cut off function $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ with support in $\{\tau \geq 1\}$.

Outline of proof of LAP bounds

We use a weight function of the form

$$
\Theta=\chi \theta,
$$

where

$$
\theta=\int_{0}^{\tau / R}(1+s)^{-1-\delta} \mathrm{d} s=\delta^{-1}\left[1-(1+\tau / R)^{-\delta}\right] ; \quad \delta>0, \quad R \geq 1
$$

We are going to compute and bound a distorted commutator

$$
\operatorname{Im}(A \Theta(H-z))
$$

and we obtain a key estimate to prove LAP bounds. Thus the LAP bounds holds.

Thank you for your attention

