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Aim of this talk

· To see some effects of geometry on long-time behavior of solutions to the
Schrödinger equation

· To investigate quantum-classical correspondence for the Strichartz estimates
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Strichartz estimates

Let P be a self-adjoint operator on L2(X , dg), where (X , g) is a (noncompact)
Riemannian manifold. The Strichartz estimates for the Schrödinger equation:{

i∂tu(t) = Pu(t)
u(0) = u0.

are inequalities like

∥e−itPu0∥Lqt Lrz ≲ ∥u0∥2,

where ∥ · ∥p = ∥ · ∥Lp(X ,dg) and Lqt L
r
z = Lq(Rt ; L

r (X , dg(z))). If r > 2 these estimates
represent smoothing effects by the propagator.
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Strichartz estimates for the free Laplacian

Example (Strichartz ’77, Ginibre-Velo ’85, Yajima ’87, Keel-Tao ’98)

For the free Laplacian on L2(Rd), d ≥ 1, the Strichartz estimates:

∥e it∆u0∥Lqt Lrz ≲ ∥u0∥2 (0.1)

hold if and only if (q, r) satisfies the admissible condition:

(q, r) ∈ [2,∞]2,
2

q
= d

(
1

2
− 1

r

)
, (d , q, r) ̸= (2, 2,∞).

(0.1) is equivalent to the validity of∥∥∥∥∥
∞∑
n=0

νn|e it∆fn|2
∥∥∥∥∥
L
q
2
t L

r
2
z

≲ ∥ν∥ℓ1

for all orthonormal systems {fn} ⊂ L2(Rd) and all complex-valued sequences ν = {νn}.
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Strichartz estimates for orthonormal functions

Recently the orthonormal Strichartz estimates (Strichartz estimates for orthonormal
functions) are proved for the free Laplacian on L2(Rd).

Theorem (Frank-Lewin-Lieb-Seiringer ’14, Frank-Sabin ’17)

Assume either of the following:

1 d ≥ 1, q, r ∈ [2,∞], 2q = d
(
1
2 − 1

r

)
, r ∈ [2, 2(d+1)

d−1 ) and β = 2r
r+2 .

2 d ≥ 3, q, r ∈ [2,∞], 2q = d
(
1
2 − 1

r

)
, r ∈ [2(d+1)

d−1 , 2d
d−2) and 2β < q.

Then ∥∥∥∥∥
∞∑
n=0

νn|e it∆fn|2
∥∥∥∥∥
L
q
2
t L

r
2
z

≲ ∥ν∥ℓβ

holds for all orthonormal systems {fn} and all complex-valued sequences ν = {νn}.

Since β ≥ 1 for all (q, r) and β > 1 if r > 2, these are better than the ordinary
Strichartz estimates. The range of β in (1) is optimal.
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Remark 1 (density of operator)

For all orthonormal systems {fn} ⊂ L2(X , dg) and all ν = {νn} ∈ ℓβ, β ∈ [1,∞), we
set γ :=

∑∞
n=0 νn|fn⟩⟨fn| ∈ L(L2) (|f ⟩⟨f |g := ⟨f , g⟩f ). Then

ρ(e−itPγe itP) =
∞∑
n=0

νn|e−itP fn|2.

· For A ∈ L(L2), ρ(A): the density of A is formally defined by ρ(A)(z) = KA(z , z),
where KA(z , z

′) is the distribution kernel of A.
· γ(t) = e−itPγe itP is a solution to the Heisenberg equation:{

i∂tγ(t) = [P, γ(t)]
γ(0) = γ.

· Total number of particles = Tr(γ(t)) = Tr(γ).
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Remark 2 (Why restricted to the diagonal ?)

To see smoothing properties of γ(t), restriction to diag = {(z , z) | z ∈ X} is natural.
Consider (X , g) = (Rd , g), g : dz2+ perturbation, P = −∆g . If γ = aw (z ,Dz),

γ(t) = e−itPaw (z ,Dz)e
itP ∼ bwt (z ,Dz) =: Bt

with bt(z , ζ) = a ◦ e−tHp(z , ζ), p(z , ζ) = g ij(z)ζiζj and Hp = ∂p
∂ζ

∂
∂z − ∂p

∂z
∂
∂ζ . Since

WF (KBt ) ⊂ N∗ diag \0 = {(z , ζ, z ,−ζ) | ζ ̸= 0},

KBt is smooth outside diag.

Notations: (g ij) = (gij)
−1, g = gijdz

idz j .

aw (z ,Dz)u(z) =
∫
e i(z−z ′)ζa( z+z ′

2 , ζ)u(z ′)dz ′dζ.

7 / 21



Setting

We consider scattering manifolds (manifolds with asymptotically conic ends).

Assumption (A)

(M◦, g) is a d-dimensional noncompact complete Riemannian manifold with d ≥ 3.
There exists a compact subset K ⊂ M◦ such that M◦\K is diffeomorphic to
(0,∞)× Y . Here Y is a (d − 1)-dimensional compact connected manifold. We also
assume that there exists a compactification M of M◦ such that ∂M = Y and in a
collar neighborhood of ∂M, [0, ϵ0)x × Yy , g takes a form g = dx2

x4
+ h(x)

x2
. Here

h ∈ C∞([0, ϵ0);S
2T ∗Y ).

Assumption (B)

V ∈ C∞(M) satisfies V (x , y) = O(x2+ϵ) near ∂M for some ϵ > 0.
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Known results

Definition

(M◦, g) is nontrapping if every geodesic z : R → M◦ goes to ∂M as t → ±∞.

· Local smoothing estimates ∥e it∆gu0∥
L2locH

1
2
loc

≲ ∥u0∥2: Doi ’96 (nontrapping),

Nonnenmacher-Zworski ’09 (logarithmic derivative loss by mild-trapping)

· Strichartz estimates: Hassell-Zhang ’16 (nontrapping), Zhang-Zheng ’17,
Bouclet-Mizutani ’24 (mild-trapping), Burq-Guillarmou-Hassell ’10 (no global-in-time
estimate with an elliptic stable periodic trajectory)

· Smoothness of fundamental solution: Doi ’00 (nontrapping), Taira ’23
(mild-trapping, non-smoothness with an elliptic periodic geodesic)

Remark

All negative results depend on quasimodes concentrating on a periodic trajectory.
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Main results

Theorem

Let (M◦, g) and V be as in Assumptions A and B. Suppose (M◦, g) is nontrapping.
We also assume the Schrödinger operator P = −∆g + V has neither nonpositive
eigenvalues nor zero resonances. Then∥∥∥∥∥∥

∞∑
j=0

νj |e−itP fj |2
∥∥∥∥∥∥
L
q
2
t L

r
2
z

≲ ∥ν∥ℓβ

hold for any orthonormal system {fj} ⊂ L2(M◦, dg) and any complex-valued sequence
ν = {νj}. Here admissible pair (q, r) and β ∈ [1,∞] satisfy either of the following

conditions: If r ∈ [2, 2(d+1)
d−1 ), then β = 2r

r+2 , and if r ∈ [2(d+1)
d−1 , 2d

d−2), then β < q
2 .

The important part is r ∈ [2, 2(d+1)
d−1 ) since the other part follows from interpolation.

10 / 21



Remark (conjugate points)

Definition

Let z : [0, t0] → M◦ be a geodesic. z(t0) is a conjugate point of z(0) if and only if
expz(0) is singular at t0ż(0).

If (z , z ′) ∈ M◦ ×M◦ is a conjugate point, the dispersive estimate

|e it∆g (z , z ′)| ≲ |t|−
d
2

fails (Hassell-Wunsch ’05). The orthonormal Strichartz estimates hold since we only
need pointwise estimates microlocalized near the diagonal:

|U(t)U(s)∗(z , z ′)| ≲ |t|−
d
2 .

Roughly U(t) = Qe it∆g with some ΨDO Q supported in a sufficiently small region.
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Quantum and classical correspondense

We use the scattering symbol class

Sk,l := S

(
⟨ζ⟩k⟨z⟩l , dz

2

⟨z⟩2
+

dζ2

⟨ζ⟩2

)
= {a ∈ C∞(T ∗Rd) | |∂α

z ∂
β
ζ a(z , ζ)| ≲ ⟨ζ⟩k−|β|⟨z⟩l−|α|}

since the compactness of operators is important. By the asymptotic formula
[aw (z , hDz), b

w (z , hDz)] ∼ h
i {a, b}

w (z , hDz), the following equations correspond:{
ih∂tγ(t) = [−h2∆g , γ(t)]
γ(0) = γ

(γ(t) = e−ith∆gγe ith∆g )

{
∂t f (t, z , ζ) + Hpf (t, z , ζ) = 0
f (0, z , ζ) = f0(z , ζ)

(f (t, z , ζ) = f0 ◦ e−tHp(z , ζ))

where p(z , ζ) = g ij(z)ζiζj .
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Main results

Theorem

Assume p ∈ S2,0 is real-valued, homogeneous of degree 2, Hp is complete on T ∗Rd

and P = pw (z ,Dz) is essentially self-adjoint on L2(Rd) with its core C∞
0 (Rd). If∥∥∥∥∥∥

∞∑
j=0

νj |e−itP fj |2
∥∥∥∥∥∥
L
q
2
t L

r
2
z

≲ ∥ν∥ℓβ (0.2)

holds for any orthonormal system {fj} in L2(Rd), complex-valued sequences ν = {νj}
and some (q, r , β) satisfying q ∈ [2,∞], r ∈ [2,∞), 2

q = d(12 − 1
r ) and β = 2r

r+2 , then∥∥∥∥∫
Rd

f ◦ e−tHp(z , ζ)dζ

∥∥∥∥
L
q
2
t L

r
2
z

≲ ∥f ∥
Lβz,ζ

(0.3)

holds for the same (q, r , β).
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Main results

Remark

We don’t need geometric assumptions except for the completeness of Hp and the
essential self-adjointness of P, for example, nontrapping conditions or absence of
conjugate points.

The following quadruplet naturally appears in the Strichartz estimates for the kinetic
transport equations.

Definition

(q, r , p, a) ∈ [1,∞]4 is called a KT-admissible quadruplet if and only if
a = HM(p, r), 1q = d

2 (
1
p − 1

r ), p∗(a) ≤ p ≤ a ≤ r ≤ r∗(a) and (q, r , p, d) ̸= (a,∞, a2 , 1)

hold. Here HM(p, r) is the harmonic mean of p and r , i.e. HM(p, r)−1 = 1
2(

1
p + 1

r ). If
d+1
d ≤ a ≤ ∞, then (p∗(a), r∗(a)) = ( da

d+1 ,
da
d−1). If 1 ≤ a ≤ d+1

d , then
(p∗(a), r∗(a)) = (1, a

2−a). A KT-admissible quadruplet (q, r , p, a) is called the endpoint

if (q, r , p) = (a, r∗(a), p∗(a)) and
d+1
d ≤ a < ∞ hold.
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Main results

Corollary (Strichartz estimates for transport equations)

Let p ∈ S2,0 be as in the above theorem. Suppose (0.2) holds for any (q, r , β)

satisfying q, r ∈ [2,∞], r ∈ [2, 2(d+1)
d−1 ), 2q = d(12 − 1

r ) and β = 2r
r+2 . Then

∥f ◦ e−tHp∥Lqt LrzLpζ ≲ ∥f ∥Laz,ζ (0.4)

holds for any non-endpoint KT-admissible quadruplet (q, r , p, a). Furthermore If
(q, r , p, a) and (q̃, r̃ , p̃, a′) are non-endpoint KT-admissible quadruplet, then∥∥∥∥∫ t

0
F (s) ◦ e−(t−s)Hp(z , ζ)ds

∥∥∥∥
Lqt L

r
zL

p
ζ

≲ ∥F∥
Lq̃

′
t Lr̃′z Lp̃

′
ζ

(0.5)

holds.
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Example and known results

Example

Let g be a nontrapping scattering metric on Rd (d ≥ 3), which satisfies
|∂α

z gij(z)| ≲ ⟨z⟩−|α| for any 1 ≤ i , j ≤ d and α ∈ Nd
0 . Then the assumptions in the

above corollary are satisfied for p(z , ζ) =
∑d

i ,j=1 g
ij(z)ζiζj ∈ S2,0.

Remark

Consider p(z , ζ) = |ζ|2. At the endpoint, (0.4) fails (Bennett-Bez-Gutierrez-Lee ’14).
(0.4) holds if and only if (q, r , p, a) is a non-endpoint KT-admissible quadruplet.

· p(z , ζ) = |ζ|2: Castella-Perthame ’96, Keel-Tao ’98, Ovcharov ’11
· 1D and p(z , ζ) = g(z)ζ2, g ∼ 1: weighted estimates by Salort ’06
· nontrapping compactly supported perturbation of dz2: Salort ’07
· nontrapping long-range perturbation of dz2: Salort ’07 (with derivative loss)
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Counterexamples of orthonormal Strichartz estimates

Definition

We say that the sharp orthonormal Strichartz estimates fail if and only if for any
(q, r , β) satisfying q, r ∈ [2,∞), r ∈ [2, 2(d+1)

d−1 ), 2q = d(12 − 1
r ) and β = 2r

r+2 , (0.2) does

not hold uniformly in orthonormal {fj} ⊂ L2 and ν = {νj}.

Let p ∈ S2,0 is real-valued, homogeneous of degree 2, Hp is complete on T ∗Rd and
P = pw (z ,Dz) is essentially self-adjoint on L2(Rd).

Corollary

Assume d = 1. If there exists a periodic trajectory γ ⊂ T ∗R associated to Hp, the
sharp orthonormal Strichartz estimates fail.

Corollary

If there exists a periodic stable trajectory γ ⊂ T ∗Rd associated to Hp, the sharp
orthonormal Strichartz estimates fail.
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Example

Let N be the north pole of Sd for d ≥ 2. We define F : Sd \ {N}(⊂ Rd+1) → Rd by
F (z1, . . . , zd+1) = ( z1

1−zd+1
, . . . , zd

1−zd+1
) and G : Rd → Bd by G (z) = z

⟨z⟩ . For r0,

ϵ ∈ (0, 1) satisfying r0 + 2ϵ < 1, we take a cutoff function χ ∈ C∞([0,∞); [0, 1]) such
that

χ(r) =

{
1 (r ≤ r0 + ϵ)

0 (r ≥ r0 + 2ϵ)

Example

If r0 and ϵ are sufficiently small, then

gsc := (1− χ(|z |))dz2 + χ(|z |)(G−1)∗(F−1)∗gSd\{N}

is a well-defined scattering metric on Rd . Furthermore the sharp orthonormal
Strichartz estimates fail for ∆gsc .
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Thank you for your attention !
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Application to Boltzmann equation on scattering manifolds

Consider the Boltzmann equation on T ∗Rd .{
∂t f (t, z , ζ) + Hpf (t, z , ζ) = Q(f , f )(t, z , ζ)
f (0, z , ζ) = f0(z , ζ)

(B)

The nonlinearity in the right hand side of (B) is given by

Q(f , f )(t, z , ζ) =

∫
Rd

∫
Sd−1

(f ′f ′∗ − ff∗)B(ζ − ζ∗, ω)dωdζ∗,

where f ′ = f (t, z , ζ ′), f ′∗ = f (t, z , ζ ′∗), f∗ = f (t, z , ζ∗) and the relations of pre-collisional
and post-collisional momentum are ζ ′ = ζ − [ω · (ζ − ζ∗)]ω, ζ

′
∗ = ζ∗ + [ω · (ζ − ζ∗)]ω.

We consider the inverse power law model B(ζ − ζ∗, ω) = |ζ − ζ∗|−1b(cos θ),

cos θ = (ζ−ζ∗)·ω
|ζ−ζ∗| with cut-off condition 0 ≤

∫
Sd−1 b(cos θ)dω < ∞ (high temperature).

Set Λ =
{
(q, r , p) ∈ [1,∞]3 | 1

q = d
p − 1, 1r = 2

d − 1
p ,

1
d < 1

p < d+1
d2

}
.
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Application to Boltzmann equation on scattering manifolds

Theorem

Assume d = 3, (0.4) and (0.5) for any non-endpoint KT-admissible quadruplet

(q, r , p, a) and (q̃, r̃ , p̃, a′). If f0 ∈ L3 ∩ L
15
8
z,ζ satisfies f0 ≥ 0 and ∥f0∥

L3∩L
15
8
z,ζ

is

sufficiently small, then (B) has a unique nonnegative solution

f ∈ C ([0,∞); L3z,ζ) ∩ Lq([0,∞); Lr
zL

p
ζ ) ∩ L2([0,∞); L

30
11
z L

10
7
ζ ) for any (q, r ,p) ∈ Λ.

Moreover there exists f∞ ∈ L3z,ζ such that

∥f (t)− f∞ ◦ e−tHp∥L3z,ζ → 0 as t → ∞. (0.6)

Remark

Chen-Holmer ’23: quantum many body system → Boltzmann equation in the mean
field limit for p(z , ζ) = |ζ|2.
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