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Aim of this talk

- To see some effects of geometry on long-time behavior of solutions to the
Schrodinger equation

- To investigate quantum-classical correspondence for the Strichartz estimates
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Strichartz estimates

Let P be a self-adjoint operator on L?(X, dg), where (X, g) is a (noncompact)
Riemannian manifold. The Strichartz estimates for the Schrodinger equation:

i0ru(t) = Pu(t)
u(0) = wp.
are inequalities like

le™" ol g1, < lluoll2,

where || - ||, = || - [[o(x,dg) and L7L; = LI(R¢; L"(X, dg(z))). If r > 2 these estimates
represent smoothing effects by the propagator.
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Strichartz estimates for the free Laplacian

Example (Strichartz '77, Ginibre-Velo '85, Yajima '87, Keel-Tao '98)

For the free Laplacian on L2(R9), d > 1, the Strichartz estimates:
le™ uoll a1y < lluoll2 (0.1)

hold if and only if (g, r) satisfies the admissible condition:

(g, r) € [2, 0012, % —d (% _ %) (g r) £ (2,2, 00).

(0.1) is equivalent to the validity of

0 .

Z I/n|eltAfn|2
n=0

for all orthonormal systems {f,} C L?(R?) and all complex-valued sequences v = {v,}.
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Strichartz estimates for orthonormal functions

Recently the orthonormal Strichartz estimates (Strichartz estimates for orthonormal
functions) are proved for the free Laplacian on L2(RY).

Theorem (Frank-Lewin-Lieb-Seiringer '14, Frank-Sabin '17)

Assume either of the following:
2(d+1)
@ d>1lqre200,2=d(3-1),re2 %) and s =25
1_1
2 r

9d23,q,r6[2,oo],%:d( -1, re[z(d+11 f—d)and26<q.
Then

AL S [1¥]les

L2L2

nle

holds for all orthonormal systems {f,,} and all complex-valued sequences v = {v,}.

Since 5 > 1 for all (g,r) and 8 > 1if r > 2, these are better than the ordinary
Strichartz estimates. The range of 5 in (1) is optimal.
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Remark 1 (density of operator)

For all orthonormal systems {f,} C (X, dg) and all v = {v,} € £?, B € [1,0), we
set v := Y7o valfa) (ol € L(L?) (If)(Flg := (f,g)f). Then

[e.9]

p(e—itP,yeitP) — Z l/n|e—itan|2.
n=0

- For A € L(L?), p(A): the density of A is formally defined by p(A)(z) = Ka(z, z),
where Ka(z,2') is the distribution kernel of A.
- y(t) = e~ "*Pe™ is a solution to the Heisenberg equation:

{ i0yy(t) = [P,~(t)]
7(0) = .

- Total number of particles = Tr(~(t)) = Tr(y).
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Remark 2 (Why restricted to the diagonal ?)

To see smoothing properties of (t), restriction to diag = {(z,z) | z € X} is natural.
Consider (X, g) = (RY, g), g: dz2+ perturbation, P = —A,. If v = a¥(z,D,),

y(t) = e a¥(z,D,)e™ ~ b¥(z,D,) =: B,

with bi(z,¢) = ao et (z,¢), p(z,¢) = g7(2)¢i¢j and H, = ?TE% — %8% Since

WF(KBt) C N diag \O = {(Z7C727 _C) | ¢ 7£ 0}7

Kpg, is smooth outside diag.

Notations: (g¥) = (g,-j)*l,g = gjdz'dz.
a%(z, D) = [ /(=) q(ZZ ()u(2)dZ' dC.
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We consider scattering manifolds (manifolds with asymptotically conic ends).

Assumption (A)

(M°, g) is a d-dimensional noncompact complete Riemannian manifold with d > 3.
There exists a compact subset K C M° such that M°\K is diffeomorphic to

(0,00) x Y. Here Y is a (d — 1)-dimensional compact connected manifold. We also
assume that there exists a compactification M of M° such that 9M = Y and in a
collar neighborhood of OM, [0,€g)x x Y), g takes a form g = dxif + % Here

h e C>®([0,¢e); S2T*Y).

Assumption (B)

V € C®(M) satisfies V(x,y) = O(x?>T¢) near OM for some € > 0.
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Known results

(M°, g) is nontrapping if every geodesic z : R — M° goes to OM as t — +oc.

- Local smoothing estimates ||e/*%¢ || , 1 S lluoll2: Doi '96 (nontrapping),
loc” "loc
Nonnenmacher-Zworski '09 (logarithmic derivative loss by mild-trapping)
- Strichartz estimates: Hassell-Zhang '16 (nontrapping), Zhang-Zheng '17,
Bouclet-Mizutani '24 (mild-trapping), Burg-Guillarmou-Hassell '10 (no global-in-time

estimate with an elliptic stable periodic trajectory)

- Smoothness of fundamental solution: Doi '00 (nontrapping), Taira '23
(mild-trapping, non-smoothness with an elliptic periodic geodesic)

All negative results depend on quasimodes concentrating on a periodic trajectory.
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Main results

Theorem

Let (M°,g) and V be as in Assumptions A and B. Suppose (M°, g) is nontrapping.
We also assume the Schrodinger operator P = —Ag + V' has neither nonpositive
eigenvalues nor zero resonances. Then

o -
> vile ™5 S v lles

— qa r
s=0 iy

hold for any orthonormal system {f;} C L>(M°,dg) and any complex-valued sequence
v = {vj}. Here admissible pair (q,r) and B € [1,x] satisfy either of the following

conditions: If r € [2, d+1)) then 8 = ,and ifr € [ d+11), dz_dz), then B < 2

d+1)

The important part is r € [2, ) since the other part follows from interpolation.
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Remark (conjugate points)

Definition
Let z : [0, to] — M° be a geodesic. z(tp) is a conjugate point of z(0) if and only if
exp,(g) is singular at toz(0).

If (z,2') € M° x M° is a conjugate point, the dispersive estimate
e85 (2,2)] S [¢] 2

fails (Hassell-Wunsch '05). The orthonormal Strichartz estimates hold since we only
need pointwise estimates microlocalized near the diagonal:

UBU(s)'(2,2) S el *.
Roughly U(t) = Qe®®s with some WDO Q supported in a sufficiently small region.
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Quantum and classical correspondense

We use the scattering symbol class

kil . kzldiz2 da¢? — (ae CO(TRY 058 (5 k=161 5\ I~lo
st =5 ((0Ha), 53 + 753 ) = {a € CX(T'R) | |0207a(2, 01 5 (O4 42y~

since the compactness of operators is important. By the asymptotic formula
[a¥(z, hD,), b"(z, hD,)] ~ 7’.’{3, b}"(z, hD,), the following equations correspond:

{ T (1(2) = &~ byt
Otf(t,z,¢) + Hpf(t,z,{) =0 B —tH,
L fon oL hms (F(t.2.0) = foo e (z.0))

where p(z,¢) = g¥(2)¢i¢;.
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Main results

Assume p € S?0 is real-valued, homogeneous of degree 2, H, is complete on T*RY
and P = p“(z,D,) is essentially self-adjoint on L2(R9) with its core C§°(RY). If

o

> vile e < llles (0.2)
Jj=0 L

holds for any orthonormal system {f;} in L?(R9), complex-valued sequences l/ = {y;}
and some (q, r, ) satisfying q € [2,00], r € [2,00), & 2=d(i-1)andp= then

holds for the same (q, r, 3).

r+2 0

/ foe te(z,¢)dC
Rd

3,5~ Sl (0.3)
212

t z
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Main results

Remark

We don’t need geometric assumptions except for the completeness of H, and the
essential self-adjointness of P, for example, nontrapping conditions or absence of
conjugate points.

The following quadruplet naturally appears in the Strichartz estimates for the kinetic
transport equations.

Definition

(g,r,p,a) € [1,00]* is called a KT-admissible quadruplet if and only if
a=HM(p,r), L =9(2 -1),p(a) <p<a<r<r(a)and (q,r,p,d)#(a00,3,1)
hold. Here HM(p, r) is the harmonic mean of p and r, i.e. HM(p,r)~! = %(% + ). 0f
1 < 2 < oo, then (p.(a), r(a)) = (325, 75)- f 1< a < 4L then

(p«(a), r«(a)) = (1,5%;). A KT-admissible quadruplet (q, r p, ) is called the endpoint
if (g,r,p) = (a, r(a), p+(a)) and L2 < a < oo hold.
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Main results

Corollary (Strichartz estimates for transport equations)

Let p € S>0 be as in the above theorem. Suppose (0.2) holds for any (g, r, )

satisfying q,r € [2,00],r € [2, 2(d+1))7% =d(3—1)and 8= m Then

—tH,
I o e llyarzie S NIflles, (0.4)

holds for any non-endpoint KT-admissible quadruplet (q,r, p, a). Furthermore If
(q,r,p,a) and (g, 7, p,a’) are non-endpoint KT-admissible quadruplet, then

S Fl
LiLeL?

/0f F(s)o e (=)o (27 ¢)ds (0.5)

ey
holds.
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Example and known results

Example

Let g be a nontrapping scattering metric on R (d > 3), which satisfies
102gii(2)| < (z)71°l for any 1 < i,j < d and o € Ng. Then the assumptions in the
above corollary are satisfied for p(z,¢) = Zi’-:l gi(z)¢i¢ € S?°.

Remark

Consider p(z,¢) = |¢|2. At the endpoint, (0.4) fails (Bennett-Bez-Gutierrez-Lee '14).
(0.4) holds if and only if (g, r, p, a) is a non-endpoint KT-admissible quadruplet.

- p(z,¢) = [¢|?: Castella-Perthame '96, Keel-Tao '98, Ovcharov '11

- 1D and p(z,¢) = g(2)¢?, g ~ 1: weighted estimates by Salort '06

- nontrapping compactly supported perturbation of dz?: Salort '07

- nontrapping long-range perturbation of dz?: Salort '07 (with derivative loss)
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Counterexamples of orthonormal Strichartz estimates

Definition

We say that the sharp orthonormal Strichartz estimates fail |f and only if for any
(q,r.B) satisfying q,r € [2,00),r € [2, 41)) 2 = d(1 — 1) and 8 = ;25 (0.2) does
not hold uniformly in orthonormal {£} C L2 and v ={v;}.

Let p € S?0 is real-valued, homogeneous of degree 2, H, is complete on T*R? and
P = p“(z, D,) is essentially self-adjoint on L?(RY).

Corollary

Assume d = 1. If there exists a periodic trajectory v C T*R associated to H,, the
sharp orthonormal Strichartz estimates fail.

Corollary

If there exists a periodic stable trajectory v C T*RY associated to Hp, the sharp

orthonormal Strichartz estimates fail.
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Example

Let N be the north pole of S¢ for d > 2. We define F : S7\ {N}(c R¥1) — RY by
Flz,. 2a01) = (25, 72 5) and G 1 RY = B by G(2) = & For o,

e € (0,1) satisfying ro + 2¢ < 1, we take a cutoff function y € C*°([0,0); [0, 1]) such

that
1 (r<n+e
(r) = (r<n+e)
0 (r>r+2e

Example

If ryp and € are sufficiently small, then
s = (L= x(|21))dz* + x(12)(G )" (F ) gso\ ()

is a well-defined scattering metric on RY. Furthermore the sharp orthonormal
Strichartz estimates fail for A, .
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Thank you for your attention !
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Application to Boltzmann equation on scattering manifolds

Consider the Boltzmann equation on T*RY.

{ Of(t,z,C) + Hpf(t,z,¢) = Q(f, f)(t,z,() (B)
f(0>z>C) = fO(Z? C)

The nonlinearity in the right hand side of (B) is given by
QA2 = [ [ (78~ BB - Gow)dad.
Rd Jsd—1
where f' = f(t,z,{"), fl = f(t,z,{.), f = f(t,z,() and the relations of pre-collisional

and post-collisional momentum are ¢! =¢ — [w- (¢ — ¢)|w, ¢ =G+ [w - (¢ — ¢)]w.
We consider the inverse power law model B(¢ — (i, w) = |¢ — (| Lb(cosh),

cosf = (C‘ C*)r" with cut-off condition 0 < [y, b(cos#)dw < oo (high temperature).
SetA={(q.r.p) el oo |5=2-11=2-L1ctodul
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Application to Boltzmann equation on scattering manifolds

Assume d = 3, (0.4) and (0.5) for any non-endpoint KT-admissible quadruplet
15

(g,r,p,a) and (§,7, p,a). Iffy € L3N Lfc satisfies fy > 0 and ||fy| LB is
’ 3nL
2,¢
sufficiently small, then (B) has a unique nonnegative solution
30 10
f e C(]0,00); L;C) N L9(]0, o0); L;Lg) N L2([0, 00); LE L/) for any (q,r,p) € A.
Moreover there exists fo € Li( such that

I£(£) = oo e™™ll i >0 as o0 (0.6)

RENEILS

Chen-Holmer '23: quantum many body system — Boltzmann equation in the mean
field limit for p(z,¢) = |¢|2.

21/21



