Topological crystals: Independence of spectral properties with respect to reference systems

Koichi Kato

Nagoya University

Himeji Conference on Partial Differential Equations March 4, 2025

Outline

- 1. Topological crystals
- 2. Analysis on topological crystals
- 3. Independence of spectrum wrt reference systems

Notations in general graphs

- \triangleright V(X): a set of vertices $\{x_1, x_2, \dots\}$.
- ► E(X): a set of unoriented edges $\{e_1, e_2, \dots\}$. $x_1 \sim x_2$ if a pair $(x_1, x_2) \in E(X)$.
- \blacktriangleright A(X): a set of oriented edges $\{e_1, \overline{e_1}, \dots\}$.
- ▶ o(e): the origin vertex of e, t(e): the terminal vertex of e, where $o(\overline{e}) = t(e)$, $t(\overline{e}) = o(e)$.
- ▶ Subset of E(X) and A(X) for each $x \in V(X)$:
 - \blacktriangleright $E(X)_x := \{e \in E(X) \mid x \text{ is an endpoint of } e\},$
 - $A(X)_x := \{ e \in A(X) \mid o(e) = x \}.$

Topological crystals

X and X: connected graphs, where X is a finite graph.

A graph morphism

$$\omega: X \to \mathfrak{X}, \ (\omega: V(X) \to V(\mathfrak{X}), \ \omega: E(X) \to E(\mathfrak{X}))$$

s.t. if $x_1 \sim x_2$, then $\omega(x_1) \sim \omega(x_2)$.

Definition 1 (Covering map, [4])

A morphism $\omega:X o\mathfrak{X}$ is called a covering map,

X: a covering graph over the base graph \mathfrak{X} , if

- 1. $\omega:V(X)\to V(\mathfrak{X})$ is surjective,
- 2. $\forall x \in V(X), \ \omega|_{E(X)_x} : E(X)_x \to E(\mathfrak{X})_{\omega(x)}$ is a bijection.

A Topological crystal and a Unit cell

Notations: $V(\mathfrak{X}) = \{\mathfrak{x}_1, \dots, \mathfrak{x}_n\}, \ E(\mathfrak{X}) = \{\mathfrak{e}_1, \dots, \mathfrak{e}_k\}.$ We choose a unit cell $U = \{x_1, \dots, x_n\} \subset V(X)$ satisfying $\omega(x_j) = \mathfrak{x}_j \ \forall j \in \{1, \dots, n\}.$

The Transformation group

 $\Gamma \subset \operatorname{Aut}(X)$ is called a *transformation group* acting upon X, s.t. $\omega \circ \gamma = \omega \ \forall \gamma \in \Gamma$.

We choose a set of generators $(\gamma_j) \equiv (\gamma_1, \dots, \gamma_d)$ of Γ . d is the number of generators.

Definition 2 (Topological Crystals, [4])

A d-dimensional topological crystal is a quadruplet $(X, \mathfrak{X}, \omega, \Gamma)$ such that:

- 1. X and X are graphs, with X finite,
- 2. $\omega: X \to \mathfrak{X}$ is a covering map,
- 3. The transformation group Γ of ω is isomorphic to \mathbb{Z}^d ,
- 4. ω is regular, i.e. for every $x, y \in V(X)$ satisfying $\omega(x) = \omega(y)$, there exists $\gamma \in \Gamma$ such that $x = \gamma y$.

Analysis on topological crystals; Periodic weight and degree function

Define a periodic weight

$$m: V(X) \to (0, \infty), E(X) \to (0, \infty)$$
 s.t.

$$m(x) = m(\gamma x), \ m(e) = m(\gamma e).$$

And set

$$m(\mathfrak{x}) \equiv m(\omega(x)) := m(x), \ m(\mathfrak{e}) \equiv m(\omega(e)) := m(e),$$

and $m(\bar{e}) := m(e).$

We introduce the degree function $\forall x \in V(X)$,

$$\deg_m(x) := \sum_{e \in A(X)_x} \frac{m(e)}{m(x)} = \sum_{\mathfrak{e} \in A(\mathfrak{X})_{\mathfrak{r}}} \frac{m(\mathfrak{e})}{m(\mathfrak{r})} =: \deg_m(\mathfrak{r})$$

The Laplace operator on topological crystals

Definition 3

The Laplace operator on a topological crystal $(X, \mathfrak{X}, \omega, \Gamma)$ is defined on $f \in \ell^2(X, m)$ and for any $x \in V(X)$ by

$$[\Delta(X, m)f](x) := \sum_{e \in A(X)_x} \frac{m(e)}{m(x)} (f(t(e)) - f(x))$$
$$= \sum_{e \in A(X)_x} \frac{m(e)}{m(x)} f(t(e)) - \deg_m(x) f(x).$$

 $\Delta(X, m)$ is a self-adjoint operator on the Hilbert space $\ell^2(X, m)$.

Three maps in topological crystals depending on U, (1) Lift

Lift $\widehat{\cdot}: V(\mathfrak{X}) \to U$ given by $\widehat{\mathfrak{x}}_j = x_j \in U$ for $\mathfrak{x}_j \in V(\mathfrak{X})$. $\widehat{\omega}(\cdot) \equiv \widehat{\omega(\cdot)}: V(X) \to U$.

(2) The floor function

 $\lfloor \cdot \rfloor : V(X) \to \Gamma$ given by $\lfloor x \rfloor \widehat{\omega}(x) = x \quad \forall x \in V(X)$. We identify Γ with \mathbb{Z}^d through generators (γ_j) as $\lfloor x \rfloor = (\sum_{j=1}^d \mu_j \gamma_j)(x), \ \mu_j \in \mathbb{Z}$.

(3) The Index map

We define the index map $\eta: A(X) \to \Gamma$ given by $\eta(e) := \lfloor t(e) \rfloor - \lfloor o(e) \rfloor \quad \forall e \in A(X)$.

Three unitary transforms

1. $\mathcal{U}_U: \ell^2(X, m) \to \ell^2\left(\mathbb{Z}^d; \ell^2(\mathfrak{X})\right);$

$$[\mathcal{U}_U f](\mu, \mathfrak{x}_j) = f(\mu x_j) \quad \mu \in \mathbb{Z}^d,$$

with μ , coordinate of $\lfloor x \rfloor$ wrt the generators of Γ .

2.
$$\mathcal{F}:\ell^2\left(\mathbb{Z}^d;\ell^2(\mathfrak{X})\right)\to L^2\left(\mathbb{T}^d;\ell^2(\mathfrak{X})\right)$$
;

$$[\mathcal{F}h](\zeta) = \sum_{\mu \in \mathbb{Z}^d} e^{-2\pi i \zeta \cdot \mu} h(\mu) \quad \zeta \in \mathbb{T}^d,$$

3.
$$\mathcal{I}_m: L^2\left(\mathbb{T}^d; \ell^2(\mathfrak{X})\right) \to L^2(\mathbb{T}^d; \mathbb{C}^n);$$

$$[\mathcal{I}_m q](\zeta) := \left(m(\mathfrak{x}_1)^{rac{1}{2}} q(\zeta, \mathfrak{x}_1), \ldots, m(\mathfrak{x}_n)^{rac{1}{2}} q(\zeta, \mathfrak{x}_n)
ight)^T.$$

The product of unitary transforms is a unitary transform.

$$\mathcal{I}m\mathcal{F}\mathcal{U}_U:\ell^2(X,m)\to L^2(\mathbb{T}^d;\mathbb{C}^n).$$
 (1)

For $g \in L^2(\mathbb{T}^d; \mathbb{C}^n)$,

$$[\mathcal{I}\mathcal{F}\mathcal{U}_U\Delta(X,m)[\mathcal{I}\mathcal{F}\mathcal{U}_U]^*g](\zeta) = h_U(\zeta)g(\zeta), \quad (2)$$

where $h_U(\zeta)$ is an $n \times n$ matrix with the entries given by

$$(h_U)_{jk}(\zeta) := \sum_{\mathfrak{e} \in A(\mathfrak{X}), \ o(\mathfrak{e}) = \mathfrak{x}_j, \ t(\mathfrak{e}) = \mathfrak{x}_k} \frac{m(\mathfrak{e})}{m(\mathfrak{x}_j)^{\frac{1}{2}} m(\mathfrak{x}_k)^{\frac{1}{2}}} e^{2\pi i \zeta \cdot \eta(\mathfrak{e})}$$

$$-\deg(\mathfrak{x}_j)\delta_{jk},$$
 (3) $\zeta\in\mathbb{T}^d.$ The image of $\Delta(X,m)$ in $L^2(\mathbb{T}^d;\mathbb{C}^n)$ is a

 $\zeta \in \mathbb{T}^d$. The image of $\Delta(X, m)$ in $L^2(\mathbb{T}^d; \mathbb{C}^n)$ is a matrix-valued multiplication operator H_U defined by the continuous function $h_U : \mathbb{T}^d \to M_n(\mathbb{C})$.

Independence of spectrum wrt the Unit Cell

For distinct unit cells $U = \{x_1, \ldots, x_n\}, \ U' = \{x'_1, \ldots, x'_n\} \text{ in } X \text{ s.t.}$ $\omega(x_j) = \omega(x'_j) = \mathfrak{x}_j \quad j = 1, \ldots, n,$ distinct lifts and floor functions based on U and U';

$$\widehat{\cdot}: \mathfrak{X} o U$$
 and $\widehat{\cdot}': \mathfrak{X} o U'$,

$$\lfloor \cdot \rfloor : V(X) \to \Gamma$$
 s.t. $\lfloor x \rfloor \widehat{\omega}(x) = x$,

and

$$|\cdot|': V(X) \to \Gamma$$
 s.t. $|x|'\widehat{\omega}'(x) = x$.

Then, distinct η and η' are defined accordingly.

Since \mathcal{IFU}_U is a unitary transform,

$$\sigma([\mathcal{I}\mathcal{F}\mathcal{U}_U]\Delta(X,m)[\mathcal{I}\mathcal{F}\mathcal{U}_U]^*) = \sigma(\Delta(X,m)).$$
 (4)

Only \mathcal{U}_U depends on the choice of U. Let $\mathcal{U}_{U'}$ be a unitary operator for another unit cell U', then

$$\sigma([\mathcal{I}\mathcal{F}\mathcal{U}_U]\Delta(X,m)[\mathcal{I}\mathcal{F}\mathcal{U}_U]^*) = \sigma(\Delta(X,m))$$
$$= \sigma([\mathcal{I}\mathcal{F}\mathcal{U}_{U'}]\Delta(X,m)[\mathcal{I}\mathcal{F}\mathcal{U}_{U'}]^*).$$

Thus,

$$\sigma(H_U) = \sigma(H_{U'}). \tag{5}$$

We have more than this

Theorem 4 ([1], Theorem 1.)

Let $h_U(\zeta)$ and $h_{U'}(\zeta)$ denote the matrices computed wrt the unit cells $U = \{x_1, \ldots, x_n\}$ and $U' = \{x'_1, \ldots, x'_n\}$ respectively. Then the equality

$$\sigma(h_U(\zeta)) = \sigma(h_{U'}(\zeta)) \tag{6}$$

holds for any $\zeta \in \mathbb{T}^d$.

(6) is the equality for each ζ , which implies the equality for the union over all ζ . This is stronger than (5) which is the equality as a set.

Proof. By a small computation, one has

$$(h_{U'})_{jk}(\zeta) = e^{2\pi i \zeta \cdot \lfloor x_j' \rfloor} (h_U)_{jk}(\zeta) e^{-2\pi i \zeta \cdot \lfloor x_k' \rfloor}.$$

Define
$$V(\zeta) := egin{pmatrix} e^{2\pi i \zeta \cdot \lfloor x_1' \rfloor} & 0 \\ & \ddots & \\ 0 & e^{2\pi i \zeta \cdot \lfloor x_n' \rfloor} \end{pmatrix}.$$
 Then, $h_{U'}(\zeta) = V(\zeta)h_{U}(\zeta)V(\zeta)^{-1}.$

Since $V(\zeta)$ is a unitary matrix,

$$\sigma(h_{U'}(\zeta)) = \sigma(V(\zeta)h_{U}(\zeta)V(\zeta)^{-1}) = \sigma(h_{U}(\zeta)).$$

(Q.E.D.)

Independence of spectrum wrt Generators for Γ

Let (γ_j) and (γ'_j) be distinct generators for Γ . Then, there exist $\alpha_{jk} \in \mathbb{Z}$ s.t. $\gamma_j = \sum_{k=1}^d \alpha_{jk} \gamma'_k \quad j = 1, \ldots, d$. Set jk-matrix $\alpha = (\alpha_{jk})$. Let $\eta(e)$ and $\eta'(e)$ be the indices wrt (γ_j) and (γ'_j) . Then, by a computation,

$$\zeta \cdot \eta'(e) = (\alpha \zeta) \cdot \eta(e).$$
 (7)

Let $h_U(\zeta)$ and $h'_U(\zeta)$ be matrices wrt (γ_i) and (γ'_i) .

Theorem 5 ([1], Theorem 2.)

In the above framework,

$$\sigma(\Delta(X, m)) = \bigcup_{\zeta \in \mathbb{T}^d} \sigma(h_U(\zeta)) = \bigcup_{\zeta \in \mathbb{T}^d} \sigma(h'_U(\zeta)),$$
and for any $\zeta \in \mathbb{T}^d$, $\sigma(h'_U(\zeta)) = \sigma(h_U(\alpha\zeta)),$
but in general $\sigma(h'_U(\zeta)) \neq \sigma(h_U(\zeta)).$

That is, only the entire spectrum of $\Delta(X, m)$ is invariant under the change in the set of generators.

ldea of the proof

$$\sigma(h_U(\zeta))$$

$$= \sigma \left(\left(\sum_{\mathfrak{e} \in A(\mathfrak{X}), \ o(\mathfrak{e}) = \mathfrak{x}_{j}, \ t(\mathfrak{e}) = \mathfrak{x}_{k}} \frac{m(\mathfrak{e})}{m(\mathfrak{x}_{j})^{\frac{1}{2}} m(\mathfrak{x}_{k})^{\frac{1}{2}}} e^{2\pi i \zeta \cdot \eta(\mathfrak{e})} - \deg(\mathfrak{x}_{j}) \delta_{jk} \right)_{jk},$$

$$\sigma(h'_{U}(\zeta))$$

$$=\sigma\bigg(\bigg(\sum_{\mathfrak{e}\in A(\mathfrak{X}),\ o(\mathfrak{e})=\mathfrak{x}_{j},\ t(\mathfrak{e})=\mathfrak{x}_{k}}\frac{m(\mathfrak{e})}{m(\mathfrak{x}_{j})^{\frac{1}{2}}m(\mathfrak{x}_{k})^{\frac{1}{2}}}e^{2\pi i(\alpha\zeta)\cdot\eta(\mathfrak{e})}$$

$$-\deg(\mathfrak{x}_j)\delta_{jk}\Big)_{jk}$$
.

Conclusion

We investigated the independence of the spectrum of the Laplace operator on topological crystal with distinct unit cells and distinct sets of generators of the transformation group.

- 1. The choice of the unit cell has only a weak impact on h_U , since the spectrum of h_U is preserved for each individual $\zeta \in \mathbb{T}^d$.
- 2. For the change in generators of the transformation group, only the entire spectrum of the Laplace operator is invariant.

References

- [1] K. Kato and S. Richard. Topological crystals: Independence of spectral properties with respect to reference systems. *Symmetry*, 16(1073):1–15, 2024.
- [2] D. Parra and S. Richard. Spectral and scattering theory for Schrödinger operators on perturbed topological crystals. *Rev. Math. Phys. 30 no. 4, 1850009–1–11850009–39,* 2018.
- [3] S. Richard and N. Tsuzu. Spectral and scattering theory for topological crystals perturbed by infinitely many new edges. *Reviews in Mathematical Physics*, 33(2):1–26, 2022.
- [4] T. Sunada. *Topological crystallography; with a view towards discrete geometric analysis.* Springer, 2013.

Thank you for your attention!