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Flat Bands

Proposition
Let us consider a fibered operator H0 =

∫⊕
Tn h0(ξ)dξ. The following are

equivalent assertions:
1 λ ∈ σ(h0(ξ)) for a positive measure subset of Tn.
2 There is an infinite orthonormal family of eigenfunctions of H0

corresponding to the eigenvalue λ.

A λ satisfying any of 1− 2 is said to be a flat band. In particular,
periodic graphs have several known examples featuring flat bands:

1 Lieb Lattice
2 Kagome Lattice
3 Super-Kagome Lattice
4 Twisted Bilayer Graphene
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Network structure

Consider the graph X, defined with the set of vertices V = Zn, and the
set of oriented edges A = {(x, y) ∈ Zn × Zn : y = x± δi}, where {δi}ni=1
form the canonical basis of Zn. We denote an edge in A by e = (x, y)
and its transpose by e = (y, x). Consider the vector spaces of

0−cochains C0(X) and 1−cochains C1(X) given by:

C0(X) := {f : V → C} ; C1(X) := {f : A → C | f(e) = −f(e)} .

The Hilbert spaces `2(V) and `2(A) are naturally defined by the inner
products of cochains:

〈f1, f2〉0 =
∑
µ∈V

f1(µ)f2(µ); 〈g1, g2〉1 = 1
2
∑
e∈A

g1(e)g2(e),

respectively.
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Dirac-type operator

The coboundary operator d : `2(V)→ `2(A) i.e., the discrete version of
the exterior derivative is defined by

df(e) := f(ν)− f(µ), for e = (µ, ν) ∈ A.

The adjoint d∗ : `2(A)→ `2(V) is given by the finite sum

d∗g(µ) =
n∑
j=1

g(µ, µ+ δj) +
n∑
j=1

g(µ, µ− δj), for µ ∈ V.

Then, for a positive constant m let us consider the free Dirac-type
operator

H0 =
(
m d∗

d −m

)
.
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Comments on the model

It is easy to see that

H2
0 =

(
∆V +m2 0

0 ∆A +m2

)
,

Where ∆V is the Laplacian describing diffusion from vertex to vertex
through edges and ∆A is the (1-down) Laplacian describing diffusion
from edge to edge through vertices. So it is natural to think of H0 as a
Dirac-type operator.
For each µ ∈ Zn we can construct a cycle of edges. By taking the
indicator function corresponding to that cycle, we obtain fµ such that
dfµ = 0. Since we can repeat this construction for every µ we obtain an
infinite dimensional eigenvalue at −m.
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Symbol of H0

Proposition
On Tn define the functions aj(ξ) = −1 + e−2πiξj . Then, the operator
H0 is unitarily equivalent to a matrix-valued multiplication operator in
L2(Tn;Cn+1) given by the real-analytic function

h0(ξ) =


m a1(ξ) . . . an(ξ)

a1(ξ) −m . . . 0
... . . . ...

an(ξ) 0 . . . −m

 .

From its characteristic polynomial

pz(ξ) = (−1)n(m+ z)n−1
(
m2 − z2 +

n∑
j=1
|ai(ξ)|2

)
.

we can recognize the flat band at −m.
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Spectral Structure

The analysis of its band functions permits us to show that the
spectrum of H0 is

σ(H0) = σess(H0) = σac(H0) = [−
√
m2 + 4n,−m]

⋃
[m,

√
m2 + 4n].

D. Parra (UFRO) Asymptotics at a flat band 2025/03/03 6 / 15



Perturbation
Let us consider V : X → R such that V (e) = V (e) for every e ∈ A.
Given such a V , our full hamiltonian is defined by

H = H0 + V .

Suppose that V decays at infinity so it defines a compact operator.
Then we have that σess(H±) = σess(H0). Moreover, since m > 0,
(−m,m) is a gap in the essential spectrum of H.

Then, for λ ∈ (0,m) define the function

N (λ) = Rank1(−m+λ,0)(H) .

Clearly, it counts the number of discrete eigenvalues (with multiplicity)
of H on the interval (−m+ λ, 0) .
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Admissible perturbations
Additionally, we define the following real-valued functions on Zn

v0(µ) := V (µ); vj(µ) := V (µ ej), 1 ≤ j ≤ n .

Let us consider the class of symbols Sγ(Zn) given by the functions
v : Zn → C that satisfies for any multi-index α = (α1, · · · , αn) ∈ Nn

|Dαv(µ)| ≤ Cα〈µ〉−γ−|α| ,

where Djv(µ) := v(µ+ δj)− v(µ), |α| :=
∑n
j=1 αj , and Dα := Dα1

1 ...Dαn
n .

Definition

We call a perturbation V admissible of order γ, with n > γ > 0, if
{vj}nj=0 ∈ Sγ(Zn) and for j = 1, . . . , n

vj(µ) = 〈µ〉−γ(Γj + o(1)) as µ→∞,

with Γj 6= 0 for at least one j.

D. Parra (UFRO) Asymptotics at a flat band 2025/03/03 8 / 15



Ingredients for the asymptotics
For an admissible perturbation we define the diagonal (n+ 1)× (n+ 1)
matrix Γ by

Γll =
{

Γl−1 if Γl−1 > 0 ,
0 otherwise .

We also define the function M : Tn →M(n+1)×(n+1)(C) by

M(ξ) := 1
r(ξ)



0 0 0 · · · 0

0 r1(ξ) −a2(ξ)a1(ξ) · · · −an(ξ)a1(ξ)

0 −a1(ξ)a2(ξ) r2(ξ) · · · −an(ξ)a2(ξ)
...

...
... . . . ...

0 −a1(ξ)an(ξ) −a2(ξ)an(ξ) · · · rn(ξ)


,

where

r(ξ) :=
n∑
j=1
|aj(ξ)|2 and ri(ξ) = r(ξ)− |ai(ξ)|2 =

∑
j 6=i
|aj |2 .
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Main Theorem

Theorem (Miranda & P. (2024))
Assume that V is an admissible perturbation of order γ. Define the
constant C by

C :=
∫
Tn

Tr
(
(ΓM(ξ))

n
γ

)
dξ .

Let τn denote the volume of the unitary sphere in Rn. Then, the
eigenvalue counting function satisfies

N (λ) = λ
−n
γ (C τn + o(1)), λ ↓ 0 .
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Proof (1): Effective Hamiltonian

Proposition
Let us set P := 1{−m}(H0) the projection on the flat band. Then P is
unitarily equivalent to the multiplication operator by M in
L2(Tn;Cn+1).

Then, for each κ ≤ 0 we have

±N (λ) ≤±N ((−m+ λ, 0);−mP + P (V ± κ|V |)P )
±N ((−m+ λ, 0);P⊥(H0 + (V ± κ−1|V |))P⊥) +O(1).

Lemma
N ((−m+ λ, 0);P⊥(H0 + V ± κ−1|V |)P⊥) = o(λ−n/γ), λ ↓ 0 .

Hence we need to calculate N ((λ,m);P (V ± κ|V |)P )
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Proof (2): Eigenvalues of the effective Hamiltonian

Proposition
For an admissible V we have

n+(λ;P (V±κ|V |)P )) =
(1± κ

λ

)n/γ
τn

∫
Tn

Tr
(
(M(ξ)ΓM(ξ))n/γ

)
dξ (1+o(1)), λ ↓ 0 .

To obtain this proposition we first notice that after Fourier transform
it corresponds to an integral operator with symbol MV̂κM . Then we
approximate on the diagonal by a suitable step functions supported on
cubes. The eigenvalues of that operator can be explicitly studied, and
then the proposition is recovered by taking the limit as the boxes
vanish.

Finally, the main theorem is obtained by taking κ ↓ 0 .
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Comparison with the Landau Hamiltonian

Eigenvalue asymptotics for the Schrödinger operator with homogeneous
magnetic potential and decreasing electric potential. I. Behaviour near
the essential spectrum tips. G. Raikov, Comm. PDE 15 (3), 1990.
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Comparison with the discrete Laplacian on the Lieb
Lattice (1)

(a) The periodic graph obtained from Z2 by
adding a vertex to each edge.

x0,0 x1,0

x0,1

e1

e4

e3

e2

(b) The quotient graph by
the usual action of Z2.

σ(∆) = σess(∆) = σac(∆) = [0, 2]
⋃

[4, 6]
2 is an embedded degenerated eigenvalue.
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Comparison with the discrete Laplacian on the Lieb
Lattice (2)

We set
H̃ = ∆ + Ṽ ; Ñ (λ) = Rank1(2+λ,3)(H) .

Theorem

Assume that V is an admissible perturbation of order γ and associate
3× 3 matrix Γ̃. Define the constant C̃ by

C̃ :=
∫
T2

Tr
(
(ΓM̃(ξ))

n
γ

)
dξ .

where M̃(ξ) defines the projection into the flat band after Fourier
transform. Then, the eigenvalue counting function satisfies

Ñ (λ) = λ
−n
γ (C̃ τn + o(1)), λ ↓ 0 .
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