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FURUTANI, Kenro (Advanced Mathematical Institute, Osaka City University)

Title: Calabi-Yau structure and a Bargmann type transformation on the
Cayley projective plane

Abstract: 'The purpose of our talk is

(1) to show the existence of a Calabi- Yau structure on the punctured cotangent bundle
T; (P?0) of the Cayley projective plane P?Q,

(2) to construct a Bargmann type transformation between a space of holomorphic func-
tions on T§(P?0) and the Ly-space on P?Q.

A Kahler structure on Ty (P*0) was shown by identifying it with a quadrics in the
complex space C?>"\{0} and the natural symplectic form of the cotangent bundle T (P?Q)
is expressed as a Kahler form.

Our method to construct the transformation is the pairing of polarizations, one is the
natural Lagrangian foliation given by the projection map q : Tj(P?Q) — P?0 and the
positive complex polarization defined by the Kéhler structure.

The transformation gives a quantization of the geodesic flow in terms of one parameter
group of elliptic Fourier integral operators whose canonical relations are defined by the
graphs of the geodesic flow action at each time. It turn out that for the Cayley projective
plane the results are a little bit different from other cases of the original Bargmann
transformation for Euclidean space, spheres and other projective spaces.

This is based on a joint work with Kurando Baba (TUS): arXiv 2101.07505: Calabi-
Yau structure and Bargmann type transformation on the Cayley projective plane.

HIGUCHI, Kenta (Ritsumeikan University)
Title: Semiclassical resonances generated by crossings of classical trajectories

Abstract: We consider a one-dimensional semiclassical coupled Schrédinger operator

P(h)z(hﬁl/* h;QV ) in L*R) & LA(R). (1)

Here h > 0 denotes the semiclassical parameter,

2
P = —hQ% +Vi(z), z€R, (j=1,2)

are Schrodinger operators with V; € C*°(R;R), W = W(x, hD,) a first-order semiclassical

differential operator and W* its formal adjoint. We study the resonances of P near an

energy Fy € R at which both the Hamiltonian systems corresponding to P, and P; are

non-trapping. It is well known that, near £y, each P; has no resonance with imaginary

part of order hlog(1/h) (see [Ma]). We will see however that the coupled operator P(h)



Figure 2: A case without any closed curves

has resonances at this order if the Hamiltonian trajectories corresponding to P, and P,
cross and make a closed trajectory. We give precise asymptotics of such resonances in
terms of the geometry of these trajectories and the crossings.

[Hi] K. Higuchi, Resonance free domain for a system of Schrddinger operators with energy-
level crossings, Rev. Math. Phys., Online Ready.

[Ma] A. Martinez, Resonance free domains for non globally analytic potentials, Annales
Henri Poincaré 3 (2002), 739-756.

HIROSHIMA, Fumio (Kyushu University)
Title: Localization of the ground state of the Nelson model

Abstract: 'The ground state of the renormalized and non-renormalized Nelson model in
quantum field theory is studied. Localizations of the ground state are an important prob-
lem. The ground state can be seen as a function of three argumetns: the position variable
x, the number of bosons n and the field variable ¢. We show the spatial exponential decay
in x in terms of the Agmon metric and Gaussian domination in ¢. The super exponential
decay of the number of bosons is also shown. To show the localizations we apply the
Gibbs measure associated with the ground state.

ISHIWATA, Satoshi (Yamagata University)
Title: Geometric analysis on manifolds with ends

Abstract: 1In this talk, we consider the behavior of the heat kernel on manifold with ends
(ex. connected sum of tube and plane) and some related results. This talk is based on a
joint work with A. Grigor’yan (Bielefeld) and L. Saloff-Coste (Cornell).



KAMEOKA, Kentaro (The University of Tokyo)

Title: Resonances and complex absorbing potential method for the
Wigner-von Neumann type Hamiltonian

Abstract: We study the Wigner-von Neumann type Hamiltonian, which has an oscillatory
and slowly decaying potential. We define the complex resonances by proving the exis-
tence of meromorphic continuations of matrix elements of resolvent. We also characterize
resonances by complex absorbing potential method. The proofs are based on our new
complex distortion of Hamiltonian. This is joint work with Shu Nakamura.

KAMIMOTO, Joe (Kyushu University)

Title: Asymptotic analysis of oscillatory integrals with degenerate phases

Abstract: This talk is concerned with the behavior of scalar oscillatory integrals of the
form:

I(t) = /n @ () da

for large values of the real papameter t. The above integrals appear in various mathe-
matical fields and there have been many interesting studies about their behavior.

In the case when the Hessian of the phase is nondegenerate, the phase can be simply
expressed by coordinate changes (via the Morse lemma), which can compute an exact
asymptotic expansion of oscillatory integrals. On the other hand, when the phase is de-
generate, it is quite difficult to understand their bahavior since regular coordinate changes
are not always sufficiently useful in this case. In the history of studies in the degenerate
case, methods based on “resolution of singularities” provide extremely powerful tools for
understanding their behavior. The seminal result in this direction is due to A. Varchenko.
In this talk, after recalling his work, we explain many kinds of results which generalize
and improve it. These contain recent important works due to the real analysis school of
E.M. Stein and our results with T. Nose.

LEVITINA, Galina (Australian National University)
Title: Cwikel-type estimates on open domains

Abstract: Estimates on the rate of decay of the singular values of the operators of the
type f(x)g(-iv) take their origin in the study of the number of bound states of Schrodinger
operators. Estimates in the weak-Schatten ideals £, ., were first conjectured by Simon
and later proved by Cwikel for p > 2. In this talk Cwikel-type estimates in weak-Schatten
ideal £, « in bounded open sets of the Euclidean space are discussed. Different boundary
conditions for a self-adjoint Laplacian are considered.



NAKANO, Fumihiko (Tohoku University)

Title: Scaling limit of eigenvalues and eigenfunctions of 1-dimensional random
Schrodinger operators

Abstract: 1-dimensional Schrodinger operator with random decaying potential has var-
ious spectral and level statistics properties depending on the decay rate of the potential
at infinity. In this talk we consider the random measure associated to the eigenfunctions
and its scaling limit.

NIIKUNI, Hiroaki (Maebashi Institute of Technology)

Title: Edge states of Schrodinger equations on graphene with zigzag
boundaries

Abstract:  Recently, topological insulators have been garnering attention in condensed
matter physics. They behave as an insulator in its interior, but their surfaces contain
conducting states (edge states). These properties are explained by comparing the spectum
of a Hamiltonian in the whole space with it in the half space with a boundary.

In this talk, we discuss spectral structures of Schrodinger operators on graphene with
zigzag boundaries from the point of view of quantum graphs. Let I' = (E,V) be the
hexagonal lattice (graphene), I'¥ = (E*, V*) the half of I with zigzag boundaries. Here, E
(E*, resp.) and V (V¥ resp.) are the set of edges and vertices of I' (I, resp.), respectively.
Assume that the length of each edge is equal to 1. We define the Hamiltonian H in L*(T")
and H* in L?(T'*) as follows. For each e € E¥,

(H*)(z) = —y"(z) + q(2)y(z),

where x € (0,1) is the local coordinate on e and ¢ € L?(0,1) is a potential. Let y €
Dom(H?*) satisfy (i) the Kirchhoff-Neumann vertex condition at any v € V* except zigzag
boundaries and (ii) the Dirichlet boundary condition on zigzag boundaries. On the other
hand, the operator H acts as

(Hy)(x) = —y"(z) + q(x)y(z)

on each x € E. In addition, y € Dom(H) satisfies the Kirchhoff-Neumann vertex con-
dition at any v € V. If ¢ is even, then the spectrum of H is discussed by P. Kuchment
and O. Post in 2007. Thus, we study o(H*) for a general ¢ € L?(0,1). Then, we compare
o(H*) with o(H) for an even ¢ € L?(0,1).

Using the theory of direct integral decompositions, we have a unitary equivalence
HY ~ fﬁ H*(p)%, where H*(p) is a fiber operator for H* for a quasi-momentum y €
St = [—m, 7). Studying o(H*(uu)) for each u € S', we derive the results on o(H?).
To state main results, we introduce notations. Let op be the set of eigenvalues of the
problem —y” + qy = Ay and y(0) = y(1). Moreover, we put ag = 0,(H*) \ op and call an
eigenfunction corresponding to A € ag an edge state.



Theorem 1 (to appear in ”Results in Mathematics”) Fix q¢ € L*(0,1), which is not
necessarily even.

(i) (Basic spectral structure) There exists some sequence \f < \] < A\J <Ay < \f <
c<AS S)\j < -+ — 400 such that

o(H) = (| JB;)UopUdl,
j=1
where B; = [\, \]] for each j € N.

(it) (Ezistence of edge states) We have of = {A € R| (1, X) + 2¢/(1,X) = 0} as the
infinite set, where 0(x, \) and @(x,\) are the solutions to —y" + qy = Ay as well as the
initial conditions (0(0, ), 0 (0, X)) = (1,0) and (p(0,A), ¢’ (0, X)) = (0,1), respectively. In
particular, we have crf, # 0.

(iii) (Location of the eigenvalues) Putting G; = (A7, \}), 0G; = {A;, AT} and G; =
(A, AT] for each j € N, we have

J7

o o
op C U Gy, and af, C U Gop_1.

n=1 n=1

Remark 1 In 2007, P. Kuchment and O. Post proved that o(H) = (U;2, Bj) U op,

provided that ¢ € L*(0,1) is even. In this sense, ag stands the set of the eigenvalues for
the edge states.

SHIMAKURA, Norio

Title: Resolvent kernel of an elliptic operator

Abstract: — See Appendix —

TAKEI, Yumiko (Kwansei Gakuin University)

Title:  WKB analysis via topological recursion for hypergeometric
differential equations

Abstract: The exact WKB analysis is a method to analyze ordinary differential equations
with a small parameter 2. The main ingredient of the exact WKB analysis is a formal
solution for h, called a WKB solution. When we study differential equations by using the
exact WKB analysis, the so-called Voros coefficients play an important role. The Voros
coefficient is defined as a contour integral of the logarithmic derivative of WKB solutions.

On the other hand, the topological recursion is introduced by B. Eynard and N. Orantin
[EO] to study the correlation functions in the random matrix theory and it gives a gen-
eralization of the loop equations for the matrix model.

Recently, a surprising connection between the WKB analysis and the topological re-
cursion has been discovered, that is, it is found that WKB solutions can be constructed
via the topological recursion [BE].



In this talk, we prove that the Voros coefficients for hypergeometric differential equa-
tions are described by the generating functions of free energies defined in terms of the
topological recursion. Furthermore, as its applications we show the following objects can
be explicitly computed for hypergeometric equations: (i) three-term difference equations
that the generating function of free energies satisfies, (ii) explicit form of the free energies,
and (iii) explicit form of Voros coefficients [IKT,T].

[BE] Bouchard, V. and Eyanard, B., Reconstructing WKB from topological recursion,
Journal de I’Ecole polytechnique — Mathematiques, 4 (2017), 845-908.

[EO] Eynard, B. and Orantin, N., Invariants of algebraic curves and topological expansion,
Communications in Number Theory and Physics, 1 (2007), 347-452.

[IKT] Iwaki, K., Koike, T., and Takei, Y.-M., Voros coefficients for the hypergeometric
differential equations and Eynard-Orantin’s topological recursion, Part I, arXiv:1805.10945
& Part 11, Journal of Integrable Systems 3 (2019), 1-46.

[T] Takei, Y.-M., Voros Coefficients and the Topological Recursion for a Class of the Hy-
pergeometric Differential Equations associated with the Degeneration of the 2- dimensional
Garnier System, arXiv: 2005.08957.

Organized by : FUJIIE, S., HOSHIRO, T., ISOZAKI, H., IWASAKI, C.,
NAGAYASU, S., NOMURA, Y., RICHARD, S., UMEDA, T.,
and WATANABE, T.



Resolvent Kernel of an Elliptic Operator
Norio SHIMAKURA &&E#E

(HREARERAROLYILY =Y Mg, Wi TRAERIITERS, 2021 4 3 A 4-6 A (K-&))
Let = (21, -, ) be a vector of n(>1) real variables and {hy}p_o be

real numbers independent of x such that

hp>1/2 (0<p<n) andthat 3 ,hy>(n+1)/2. (1)

We fix the notation of n, z and {h,}y_o once for all.
Let £ be a partial differential operator of variables z:
n n n
0%u ou
Lu=  (Gjua; =) B0 D { (th) 5= hj} o @
jk=1 j=1  p=0

which transforms a complex function u(z) to another one [3]. We set

k=-1 +th (>0).
p=0

L is symmetric in the simplex

Q={zcR"; ;>0 (1<j<n) and zo=1-3;_,z;>0} (3)

with respect to the scalar product

(u,v) :/u(x)Tx)dV(w) with dV (= (Hm )dml- cdx,  (4)

Q

on the complex Hilbert space L?(Q2,dV). The symbol of L is equal to

n

A(f,x):Z((Sjkxj—wjﬂ?k)ﬁjfk and detA(&,w)szp

7,k=1 ) p=0
A(€, ) is positive definite in © and is of rank n—1 on the boundary of €.

Define a second scaler product

((u,v))z/ﬂ{uwZ(ajkxj xjw,c)g“ %+£u£v}dV() (4')

7,k=1



for polynomials u,v. The completion D(L) of the set of polynomials en-
dowed with the scalar product (( , )) is a dense linear subspace of L?(£2,dV).
And D(L) is the set of ue€ L2(2,dV') for which ((u,u)) <+oo. Set Lu=Lu
for ue D(L). L is said to be the Friedrichs extension of L.

Let N'={0,1,2,---} be the set of non-negative integers and

ly=s>+rKs for seN. (5)

Given an s € N and a monomial u;(x) of degree s, there exists a unique
polynomial uz(z) of degree less than s such that u = u; +uo satisfies the
equation Lu=I,u. The linear subspace £ of D(L) spanned by polynomials
u satisfying Lu = lyu is of dimension (n—1+s)!/{(n—1)!s!}, number of
monomials of degree s in n variables.

If ¢ {=X\;}2, and if f € L?(Q,dV), there exists a unique u € D(L)
which satisfies Lu+Au= f. The mapping of f to u is linear and continuous
from L%($2,dV) onto D(L). Denote u=Gxf = (L+A)7f. Gx=(L+\)" is
said to be the resolvent of L+\. This is by definition

Ga=(L+ N~ Zzﬂ for Mg {—1,}2,, (6)

where E, is the orthogonal projection of L?(Q2,dV) onto &. G admits a

unique kernel representation G(z,y;\) and we have
(L + 277 (2) =[Gle. 1 NI W)V ) ™

Theorem. The kernel of the resolvent {L+7(k*+¢?)} 7! is

(o) [ [ (55 (S ymons)

1 k+i€\ [ k—i&\ Ty (sin ¢g)2Pa—2dg
16F( 2 )F< 2 )ql;[O ﬁ;(hq—é)q’ ®)



where 7 F(a,b;c; () is the hypergeometric series of Gauss

oS eR

The simplest is in the case where > 7, hp=2:

1+§2 T COS 52 Omcosqﬁp) i (Sin¢q)2h‘?'2d¢q
O B o Ao g v v SR

obtained by applying a formula

(Lt 16

1 cos(&z)
2 2 "2’

COS 2z

; (sin z)2)

to k=1 [1,p.101]. A fundamental is a generalization of the S-function

= ap . HZ:OP(ap+hP) n41
/QHa:p dV(az)—F(Zzzo(ap+hp)) for (oo, a1, an) ENTT

We begin by the kernel E,(z,y) of E; (s€N). It is a symmetric polynomial
of z,y of degree s with respect to each of = and y [3,p.294,(4.11)],

Bet) r / / Cyy) ZW bp) M (9), (10)

where dM (¢) is the measure on (0, 7)™ defined to be

(sin ¢q )P —2d¢)q
VaT(hy— D)

dM (¢) H (3, (4.8)] (11)

and C( )(z) are the Gegenbauer polynomials of even degree generated by

a convergent power series

ZC tzs {(1 2zt+t) +(1+2Zt+t2)_"‘} (12)



for -1<2<1 and |t|<1. Set
F(0,2)=(1/2)T(k){(cosh@—z)""+(cosh §+2)""}. (13)

From (9) and (12), we have a generating function of {E,(z,y)}520

o0

Y e —(2s+r)l0) Bs(2,9) / ,_xpyp Cos¢p)dM(¢) (14)

g 25+kK

where 0 is a complex variable independent of z. (12) and (14) imply

]:(9 Z Ze—(23+n)|9|c(”)( ) (15)

s=0

Both sides of (14) converge on the set Rg x {—1<2<1} without probably
on the subset {(6,2); #=0 and z==+1} [3,(4.8)].
Let us establish the kernel G(z,y; A) in the case where

A=(k2+£%)/4 avec (€ R. (16)
We need again a sequence {ks(£)}52, :

1 [ : 254K
(£ — = —(25+K)|0]+i€0 g9 “5TH
ks (€) 2/_006 do T2ie (seN). (17)

Multiply e? to both sides of (15) and integrate with respect to 6. Then,

G("’”’y;f{ﬁ) izu +i€2+§2 // nﬁgwcos%)dM

(18)
where dM (¢) is defined by (11) and
+o0o
H(E, 2)=] F(0,2)e%%do for (£,z)e Rx{-1<z<1}. (19

F(8,2) and H(&,z) are rapidly decreasing even functions of 6 and of ¢,

respectively.



We define a Jacobi type polynomial by the O.Rodrigues formula

8 ay+tan

puer= ([Tt ) o (i st o). o

It is represented by a multiple complex integral

_aglo! B\t tantho-1l cakthi=lge,
o) =izt 0239 [T
J:

(G —ze) et

We set n; =(;/z; and v; ={|n; —1|=€} to have

Fale)= 2m)”xh°_/71 /n ijnj

Erase the sign of integration and we have finally

1) T xRl | Gy IS

=(15041)

a1+---+an+ho—1 " ak+hk*1dnk

7 =n
- +1 °
k=1 (nk 1)ak

Successive differentiations are done with respect to x in (20), while they

are done with respect to n in (21) at n=(1,---,1). Py(x) is of degree
lo| =014 -+an

and satisfies the equation L[P,] = l|o|Pa [6,p.306]. Any polynomial of
(21, -, Zn) is equal to one and only one linear combination of Py (z)’s

On the other hand, let us define a second polynomial

|ex|

Qa(a) =Cas" +Z(£[l|a| r—zla,){i( Jaij +h”aa Yool @)

j=1
for every a=(ay, -+, a,) EN™, where the coefficient C, is the following

|a C Hak; / /ho—l-wtrl- +anyh1 —1+aq yzn—l-i-andyo__,dyn_ (23)
¥0>0,y1>0,,yn >0,y0+y1++yn <1

5



Qa(z) is also of degree |a| and satisfies L[Qa] = l|o|Qa 3,(B.2),p.306].
Qo (z) contains an only one term z® of degree |a| and any polynomial of
is equal to a linear combination of Q(z)’s.

We have by (15) and (19)

F( ) U3 'L§ (k) 25+K—1 F("':) > 25+K (k)
H(E, 2)= 21+/(t v 20 “Nz)t dt= “§4ls+n2+£2023 (2)

which is the Laurent expansion of #(§, z) or again

n oo
I'(k 25+K "
H(E,Z\/xpyp cos gbp) = (H)Z EET c )(Z,/azpyp cos ¢p) (24)
= 2 s=04ls+m +£&
Lemma 1 For every non-gegative integer s, the integral

/ / ol Z\/@;cosqﬁp)dM &) (a)

is a symmetric polynomial of z,y.

Proof. (a) is a linear combination of integrals
/ / H{ VZpYp €OS ¢p) »(sin ¢p)2hp_2}dM(¢))' (0)

If one of them does not vanish identically, ZZ=0 my, is even because Cé';) )
is an even polynomial. If one of m, is odd, the corresponding integral (b)

vanishes identically as a function of z,y because

/0(, /TpYp COS ¢p) ™7 (sin qﬁp)th_qubp =, (c)

So, we have only the terms of type (b) with all m; even and all square root
signs dispparear by integration on (0,7)"*". The function (a) is therefore
a symmetric polynomial of z,y. q.e.d.
Lemma 2
He =TSP ()R (T ) @
| 6




Proof. Define a new variable w instead of 6 by setting
sinw=1/coshf with w|g=o=7/2.
Then, df=(1/sinw)dw and we have by (11)

w (sinw)®t (sinw)rt

SR Y N I T ol P

It is an even function of z whose Taylor series is

o0

H(E, 2) :mez—lﬁs)zzs/j(tan %)ig(sin w)" 257 1d.

Set u=(tan %)2. Then,

N 23 oo
/ (tan %) (sinw)* 2o dw= 2””+23‘4/ EaL (14+u) "~ du
0 0

=PfnZe=a (%i«SjLs)r(n;if +S)/F(KJ+2S).

The expression (25) of H (&, z) is obtained. q.e.d.
Proof of the Theorem. (8) follows at once from (18),(25). q.e.d.
Let us verify the resolvent equation :

(/\—M)/QG(%:E’;M)G(w',y; AdV (z')=G(z,y; ) —G(z,y; A).  (26)

Proof of (26). Given two arbitrary real numbers &, 7, set for simplicity

2 2 -
Ga(z,9)=G(2,y; )\)fOI’/\ZR g and Gu(z,y)=G(z,y; 1) foru:,<6 177 :
Then,
=(L+N)~ = E,, Gu=L+w)7'=) ——E
Gr=(L+)) ;ler)\ p=(L+p) 2 i .



E, and E; are commutative E;E; =E;E —(5stEs , each one is idempotent
E.22=E; and furthermore

1 1 ( 11 )
LN Us+n)  A—pNlstp L+X)
We have GG, =G,Gx and
= 1

GrG (Zl +,\)(th+;) 1MZ(S+M ls+)\) A—M(G“_G*)'

s=

q.e.d.
A second expression of H({,z) Since k>0 by the assumption (1),

we have an integer h greater than x and start again from the equality

(A1) 00 yyh—r-1 g
A _l—‘(h—lﬁ:)l—‘(h‘,)/o g A= (27)

which is true because

h—g)w—F— wr—k =t
( ) h 1_ h h —i h
(Atw)k  (Atw)P™ 0w (A+w)P

if h> k. By applying (27) to A=cosh -z, we have

1 —i—%O_ri 3h zgedg
i, z)_I‘(h—n)I‘(m) /Ow dw@zh/_wcosh0—2+w' (28)

We make use of a formula for 0<b<m, (ER :

/+°° e€9d9  2m sinh[b¢]

= . 2
o Cosh@+cosb  sinb sinh[m{] &)

Proof of (29). Set v=e’. We have then

/+°° e€9dp B oo i duy _/+°° 20% dy
oo COShO+cosb  Jov2+2vcosb+1 " [y (1+e?v)(1+e~iv)
if b is real and independent of §. Decompose the last fraction into two:
9 _1<ez‘b_e—ib)
(14ev)(1+e~ty)  isinb\l+edv 14+e~tby/
8




Multiply v* to both sides to have

/+°° e%?dd eI —e %I
oo COsh@+cosb isinb

with

+004ib i€ +00,—iby i€
I+:/ evtdv 4 I_:/ e Pvtdy.
o l+etv o 1fe

I, and I_ come in fact from one and the same improper integral :

Lot —/M"’ig dv =T (1+)0(—i€) = — " d
T, 14v ; ~ sinh[m¢]’ L

Set t=tan(v/2). Then, we have

it _ 2t
V1+t2 Ctt3

By differentiation of both sides of (29) h—1 times with respect to z,

ew/Z —

+oo &0 h—1 :
(h—l)!/ e*?do 0 27 sinh[b¢]

(cosh0—z+w)P 0z sin b sinh[ré]’ b=arccos(w—z). (30)

=00

If 0<k<h, we have

9 +o0 h—1 1 inh[b
H(&,Z): m /0' h—Kk—1 0 S [ 6]

T(h—r)C(r) Jo 975 sinb smblmg] 7 GV

Set b=arccos(w—z) and z :Z;}:@ /TpYp COS ¢p. We have finally

I<.',2+§2 22——&71. +00h_'$_1
G(:c,y, 4 )_F(H)F(h—li)/o g s

m™ prm 9h—1 :
" / 0 sinh[b¢]
0

" Jo 0zh sin bsinh[r¢]

§ dM (). 32
z:zpﬂ)\/:mcos bp ( ( )
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