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J. von-Neumann and E. Wigner showed that Schrödinger operator

HNR = HNR(V ) := −1

2
∆ + V (x), x ∈ R3 (1)

may have a positive eigenvalue even if V (x) is a smooth decaying potential[2]. Actually, they

constructed the following potential and eigenfunction

VNW(x) := −32
sin |x|

(
g(|x|)3 cos |x| − 3g(|x|)2 sin3 |x|+ g(|x|) cos |x|+ sin3 |x|

)
(1 + g(|x|)2)2

, (2)

uNW(x) :=
sin |x|

|x|(1 + g(|x|)2)
. (3)

where g(|x|) = 2|x| − sin 2|x|. Then HNR(VNW)uNW = uNW holds, and 1 ∈ σp(HNR). Since,

VNW is a decaying potential, the essential spectrum of HNR is [0,∞). Hence, eigenvalue one

is embedded in the essential spectrum.

In this talk, we generalize the Neumann and Wigner’s result to the relativistic Schrödinger

operator

H = (−∆+m2)1/2 −m+ V, (4)

acting on L2(R), where m ≥ 0 is a mass of the particle. The operator (−∆+m2)1/2 is defined

through a functional calculus. As in the non-relativistic case, if V is decaying, then essential

spectrum of H is [0,∞).

We define

h(x) :=
1

1 + g(x)2
(5)

f(x) :=

(√
(−i d

dx + 1)2 +m2 +
√
(−i d

dx − 1)2 +m2

)
h(x). (6)

and set

u(x) := f(x) sinx (7)

V (x) := λ− 1

u(x)

(√
− d2

dx2 +m2 −m

)
u(x), (8)

where λ :=
√
1 +m2 −m > 0. The following holds.

Theorem 1. Let H be a relativistic Schrödinger operator with V defined by (8). If m ≥ 146,
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then V is smooth potential with the property that V (x) = O(1/|x|) as |x| → ∞. Moreover

u ∈ D(H), and λ and u satisfy the eigenvalue equation

Hu = λu, u ∈ D(H). (9)

The above result can be extended to the three dimensional case:

Theorem 2. Assume m ≥ 146. Let W (x) = V (|x|), x ∈ R3 and define

H̃ =
√
−∆+m2 −m+W (x) (10)

which acts on L2(R3). Then

v(x) =
u(|x|)√
4π|x|

belongs to D(H̃), and the eigenvalue equation H̃v = λv holds.

Remark By restoring the speed of light c as a parameter in the operator, the eigenfunction

and potential constructed above converge to the expressions obtained by von Neumann and

Wigner as c → ∞.

The above theorem doesn’t cover the massless case m = 0. Instead of the construction of

the positive eigenvalue, we can discuss the existence of the zero energy eigenvalue.

Theorem 3. Let us define the potential Ṽν and function vν(x).

Ṽν(x) :=

−
2(1−2ν)Γ

(
ν− 1

2

)
(1−ν)

√
πΓ(ν−1)

(1 + x2)ν 2F1

(
2, 1

2 + ν; 3
2 ;−x2

)
, if ν ̸= 1

− 2
1+x2 , if ν = 1,

vν(x) :=
x

(1 + x2)ν
.

Then the eigenvalue equation
√
− d2

dx2 vν+ Ṽνvν = 0 holds in the distributional sense. Moreover

Ṽν have the following asymptotic behaviour.

Ṽν(x) =


O(1/|x|), if 1

2 < ν < 3
2 , ν ̸= 1

O(1/|x|2), if ν = 1

O(log |x|/|x|), if ν = 3
2

O(1/|x|4−2ν), if 3
2 < ν < 2.

(11)

Remark Since vν(x) = O(1/|x|2ν−1), vν ∈ L2(R) iff ν > 3
4 . Thus, the massless relativistic

Schrödinger operator with Ṽν have a zero energy eigenvalue if ν > 3
4 , and have a zero energy

resonance if 1
2 < ν ≤ 3

4 .
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