Abstract

WATANABE, Takuya (Ritsumeikan University)

"Width of semiclassical resonances above an energy level crossing"

Let P be a 2×2 matrix-valued Schrödinger operator,

$$P = \begin{pmatrix} P_1 & hW \\ hW^* & P_2 \end{pmatrix},$$

where h > 0 is a small parameter and

$$P_{j} = h^{2}D_{x}^{2} + V_{j}(x), \qquad D_{x} = \frac{1}{i}\frac{d}{dx},$$
$$W = W(x, hD_{x}) = r_{0}(x) + ir_{1}(x)hD_{x}.$$

We consider a one-dimensional model where the potentials $V_1(x)$ and $V_2(x)$ cross, and study the asymptotic distribution as $h \to 0$ of resonances near a fixed energy $E_0 \in \mathbb{R}$ above the crossing level.

We impose the following assumptions on the potentials $V_1(x)$ and $V_2(x)$: (A1) $V_1(x)$, $V_2(x)$ are real-valued on \mathbb{R} and analytic in

$$\mathcal{S} := \{ x \in \mathbb{C} ; |\operatorname{Im} x| < \delta_0 \langle \operatorname{Re} x \rangle \}.$$

(A2) $V_1(x)$, $V_2(x)$ admit limits $V_{1,\pm}$, $V_{2,\pm}$ as $\operatorname{Re} x \to \pm \infty$ in \mathcal{S} , and

$$V_{2,+} < 0 < E_0 < \min(V_{1,\pm}, V_{2,-}).$$

(A3) There exist three numbers a < b < 0 < c such that

$$V_1 > E_0 \text{ on } (-\infty, a) \cup (c, +\infty), \quad V_1 < E_0 \text{ on } (a, c),$$

$$V_2 > E_0 \text{ on } (-\infty, b), \qquad V_2 < E_0 \text{ on } (b, +\infty),$$

$$V_1'(a) < 0, \qquad V_1'(c) > 0, \qquad V_2'(b) < 0.$$

(A4) Energy level crossing occurs at one point x = 0 and

$$V_1(0) = V_2(0) = 0, \quad V_1'(0) > 0, \quad V_2'(0) < 0.$$

(A5) r_0, r_1 are bounded analytic functions on S, are real on \mathbb{R} and satisfy the ellipticity condition for W at the crossing points $(0, \pm \sqrt{E_0})$, i.e.

$$(r_0(0), r_1(0)) \neq (0, 0).$$

Under these assumptions, P is a self-adjoint operator in $L^2(\mathbb{R}) \oplus L^2(\mathbb{R})$, and $\sigma(P)$ consists of essential spectrum near E_0 . If $W \equiv 0$ (which is not the case in this talk), there would be embedded eigenvalues near E_0 associated with P_1 . Under the ellipticity condition **(A5)** on W, we expect to find resonances instead near the above embedded eigenvalues. We denote the set of such resonances by $\operatorname{Res}(P)$.

For $E \in \mathbb{C}$ close enough to E_0 , we define the action:

$$\mathcal{A}(E) := \int_{a(E)}^{c(E)} \sqrt{E - V_1(t)} \, dt$$

where a(E) (resp. c(E)) is the unique root of $V_1(x) = E$ close to a (resp. close to c). We also fix $\delta_0 > 0$ sufficiently small and $C_0 > 0$ arbitrarily large. Our aim is to investigate the resonances of P lying in the set $\mathcal{D}_h(\delta_0, C_0)$ given by

$$\mathcal{D}_h(\delta_0, C_0) := [E_0 - \delta_0, E_0 + \delta_0] - i[0, C_0 h].$$

For h > 0 and $k \in \mathbb{Z}$ such that $(k + \frac{1}{2})\pi h$ belongs to $\mathcal{A}([E_0 - 2\delta_0, E_0 + 2\delta_0])$, we set

$$e_k(h) := \mathcal{A}^{-1}\left((k+\frac{1}{2})\pi h\right).$$

Theorem Under Assumptions (A1)-(A5), for h small enough, one has

$$\operatorname{Res}(P) \cap \mathcal{D}_h(\delta_0, C_0) = \{ E_k(h); k \in \mathbb{Z} \} \cap \mathcal{D}_h(\delta_0, C_0),$$

where the $E_k(h)$'s are complex numbers that satisfy

(i) Re
$$E_k(h) = e_k(h) + \mathcal{O}(h^2)$$
,
(ii) Im $E_k(h) = -C(e_k(h))h^2 + \mathcal{O}(h^{7/3})$,

uniformly as $h \to 0$. Here

$$C(E) = \frac{\pi}{\gamma \mathcal{A}'(E)} \left| r_0(0) E^{-\frac{1}{4}} \sin\left(\frac{\mathcal{B}(E)}{h} + \frac{\pi}{4}\right) + r_1(0) E^{\frac{1}{4}} \cos\left(\frac{\mathcal{B}(E)}{h} + \frac{\pi}{4}\right) \right|^2$$

with $\gamma := V'_1(0) - V'_2(0)$ and

$$\mathcal{B}(E) := \int_{b(E)}^{0} \sqrt{E - V_2(x)} dx + \int_{0}^{c(E)} \sqrt{E - V_1(x)} dx,$$

where b(E) is the unique root of $V_2(x) = E$ close to b.

This is the joint work with Setsuro Fujiié (Ritsumeikan) and André Martinez (Bologna).