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Set up

M: compact complex manifold of dimension n with a smooth
positive (1, 1) form Θ.

Θ induce Hermitian metrics on CTM and T ∗0,qM bundle of (0, q)
forms of M , q = 0, 1, . . . , n. We shall denote all these Hermitian
metrics by 〈 · | · 〉.
Let (L, hL)→ M be a holomorpic line bundle over M. hL:Hermitian
fiber metric.RL: canonical curvature two form induced by hL.
Local picture: s: local trivializing section of L. |s|2hL = e−2φ, φ:
local smooth function. RL = 2∂∂φ. [ iπ∂∂φ] represents the first
Chern class.
(Lk , hL

k
)→ M: k-th tensor power of (L, hL). Lk : line bundle. sk :

local section of L.
∣∣sk ∣∣2

hLk
= e−2kφ. RLk = 2k∂∂φ.
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Dolbeault cohomology group

∂-complex:

· · · → Ω0,q−1(M, Lk)→ Ω0,q(M, Lk)→ Ω0,q+1(M, Lk)→ · · ·

Ω0,q(M, Lk) := C∞(M,T ∗,0,qM ⊗ Lk).

complex: ∂
2

= 0.
q-th Dolbeault cohomology group:

Hq(M, Lk) := Ker ∂:Ω0,q(M,Lk )→Ω0,q+1(M,Lk )

Im ∂:Ω0,q−1(M,Lk )→Ω0,q(M,Lk )
.

H0(M, Lk): the space of global holomorphic sections.
Main theme in Complex Geometry: Study H0(M, Lk) when k
large. k ∼= 1

h , h: Planck constant. k →∞ ∼= h→ 0.
By Lioulle’s theorem, any global holomorphic function is a
constant (M is compact).
We look for holomorphic sections!
In Complex Geometry, it is crucial to be able to construct many
holomorphic sections.
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Kodaira vanishing Theorems (1950–1960)

Kodaira showed that if L is positive, i.e. RL > 0 (L is ample),

then
we can produce many holomorphic sections.
Kodaira: dimH0(M, Lk) ≈ kn for k large. It is well-known (Siegel,
1930) that dimH0(M, Lk) . kn.
The idea of Kodaira: Kodaira showed that if L is positive then
dimHq(M, Lk) = 0 if k large, q ≥ 1. (Kodaira-Serre vanishing
Theorem).
Riemann-Roch-Hirzebruch Theorem or Atiyah-Singer index
Theorem:∑n

j=0(−1)jdimH j(M, Lk) =
∫
M Td (TM)ch (Lk).

Td (TM): Todd class of TM, ch (Lk): Chern character of Lk .

⇒
∑n

j=0(−1)jdimH j(M, Lk) = (2π)−n

n! kn
∫
M(
√
−1RL)n +O(kn−1).

⇒ If RL > 0 then dimH0(M, Lk) ≈ kn.
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Grauert-Riemenschneider conjecture (1970)

Conjecture (Grauert-Riemenschneider conjecture)

If L is semi-positive (RL ≥ 0) and positive at one point, then L is
big.

L is big if dimH0(M, Lk) ≈ kn for k large.
Motivation of GR conjecture: generalize Kodaira embedding
Theorem to Moishezon manifolds.
Moishezon manifolds: bimeromorphic to projective submanifolds.
Y.-T. Siu (1983) and J. P. Demailly (1984) solved this conjecture.
Demailly solved this conjecture by using his holomorphic Morse
inequalities.
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Demailly’s Morse inequalities

weakly Morse inequalities: ∀q = 0, 1, 2, . . . , n,

dimHq(M, Lk) ≤ (2π)−nkn
∫
M(q)

∣∣∣detRL(x)
∣∣∣ dv(x) + o(kn). (1)

strong Morse inequalities: ∀q = 0, 1, 2, . . . , n,
q∑

j=0

(−1)q−jdimH j(M, Lk)

≤
q∑

j=0

(−1)q−j(2π)−nkn
∫
M(j)

∣∣∣detRL(x)
∣∣∣ dv(x) + o(kn).

(2)

Notations: dv(x): volume form on M induced by Θ.

detRL(x) = (
√
−1RL(x))n

Θ(x)n : real number.

M(j) ={x ∈ M; RL(x) has exactly j negative eigenvalues

and n − j positive enginvalues}.
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Demailly’s Morse inequalities

Assume RL ≥ 0.

Then M(q) = ∅, ∀q ≥ 1.
Take q = 1 in (2), we get

− dimH0(M, Lk) + dimH1(M, Lk)

≤ (2π)−nkn(−1)

∫
M(0)

∣∣∣detRL(x)
∣∣∣ dv(x) + o(kn).

If RL is positive at one point (|M(0)| > 0) then
dimH0(M, Lk) ≈ kn. We solve GR conjecture.
From weak Morse inequalities, we get dimHq(M, Lk) = o(kn),
∀q ≥ 1 (asymptotic vanishing Theorems).
Combining this with Riemann-Roch-Hirzebruch Theorem, we can
also solve GR conjecture.
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Bergman kernel asymptotics (1990–)

( · | · )
hLk

: L2 inner product on Ω0,q(M, Lk) induced by hL and
〈 · | · 〉.

Locally f = sk ⊗ u, g = sk ⊗ v , ( f | g )
hLk

=
∫
〈 u | v 〉e−2kφdv .

∂ : Ω0,q(M, Lk)→ Ω0,q+1(M, Lk).
∂
∗

: Ω0,q+1(M, Lk)→ Ω0,q(M, Lk): formal adjoit of ∂ with respect
to ( · | · )

hLk
.

Kodaira Laplacian

�(q)
k = ∂ ∂

∗
+ ∂

∗
∂ : Ω0,q(M, Lk)→ Ω0,q(M, Lk).

Extend �(q)
k to L2 space:

�(q)
k : Dom�(q)

k ⊂ L2
(0,q)(M, Lk)→ L2

(0,q)(M, Lk),

Dom�(q)
k =

{
u ∈ L2

(0,q)(M, Lk); �(q)
k u ∈ L2

(0,q)(M, Lk)
}
.

Hodge theory: Ker�(q)
k
∼= Hq(M, Lk).

dimHq(M, Lk) = Ker�(q)
k <∞. Ker�(q)

k ⊂ Ω0,q(M, Lk).
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Bergman kernel asymptotics (1990–)

Let {f1, f2, . . . , fdk} orthonormal basis for Ker�(q)
k with respect to

( · | · )
hLk

, dk = dimKer�(q)
k .

Bergman kernel function P
(q)
k (x) :=

∑dk
j=1 |fj(x)|2

hLk
.

Since
∫
|fj(x)|2

hLk
dv(x) = 1, j = 1, 2, . . . , dk ,∫

P
(q)
k (x)dv(x) = dk = dimKer�(q)

k = dimHq(M, Lk).
Assume RL is non-degenerate of constant signature (n−, n+) on M.
n−: number of negative eigenvalues of RL.
n+: number of positive eigenvalues of RL. n− + n+ = n.
I. Kodaira-Andreotti-Grauert vanishing Theorem: If q 6= n− then
dimHq(M, Lk) = 0 for k large.

Hence P
(q)
k (x) = 0 if k large.

II. If q = n− = 0, n+ = n (RL > 0). G. Tian (90) proved:

P
(0)
k (x) = (2π)−nkn

∣∣detRL(x)
∣∣+ O(kn−1) in C 2 topology and

thereby proving a conjecture of Y.-T. Yau.
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Bergman kernel asymptotics (1990–)

Catlin (97), Zelditch (98) proved:

P
(0)
k (x) = (2π)−nkn

∣∣detRL(x)
∣∣+ a1(x)kn−1 + a2(x)kn−2 + · · · in

C∞ topology.

Applications : (1) k large, ∀x ∈ M, P
(0)
k (x) 6= 0. The map

x ∈ M → [f1(x), . . . , fdk (x)] ∈ CPdk−1 is well-defined (Kodaira
embedding Theorem). Note that all the components transform by
the same scalar under a change of frame. (2) The coefficients a1,
a2 play important role in the investigations about the relation
between canonical metrics in Käher geometry and stability in
algebraic geometry (S. K. Donaldson).
III. If q = n− > 0. Berman-Sjöstrand (06), Ma-Marinescu (06):

P
(q)
k (x) = (2π)−nkn

∣∣detRL(x)
∣∣+ a1(x)kn−1 + a2(x)kn−2 + · · · in

C∞ topology.
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Terminology

Spec�(q)
k : Spectrum of �(q)

k .

Spec�(q)
k =

{
all the eigenvalues of �(q)

k

}
: discrete subset of

[0,∞[.

∀λ ∈ Spec�(q)
k ,

Hq
λ(M, Lk) =

{
f ∈ Dom�(q)

k ; �(q)
k f = λf

}
⊂ Ω0,q(M, Lk).

dimHq
λ(M, Lk) <∞.

For λ ≥ 0, put Hq
≤λ(M, Lk) = ⊕0≤µ≤λH

q
µ(M, Lk),

Hq
0<µ≤λ(M, Lk) = ⊕0<µ≤λH

q
µ(M, Lk).

Spectral function P
(q)
k,≤λ(x) =

∑mk
j=1 |gj(x)|2

hLk
,

{g1, . . . , gmk
}: orthonormal basis for Hq

≤λ(M, Lk).

dimHq
≤λ(M, Lk) =

∫
M P

(q)
k,≤λ(x)dv(x).
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Main results, Hsiao-Marinescu, Commun. Anal. Geom. 22
(2014), No. 1, 1–108.

Fix N0 > 1.

I. ∀ε > 0, ∃k0 > 0, such that ∀k ≥ k0,∣∣∣k−nP(q)

k,≤k−N0
(x)− (2π)−n

∣∣∣detRL(x)
∣∣∣ 1M(q)(x)

∣∣∣ ≤ ε, ∀x ∈ M,

where 1M(q)(x) = 1 if x ∈ M(q), 1M(q)(x) = 0 if x /∈ M(q).

II. Assume that RL is non-degenerate of constant signature
(n−, n+) on an open set D b M (D ⊂ M(n−)). Then, for every
m ∈ N

⋃
{0},∣∣∣P(q)

k,≤k−N0
(x)− b(x , k)

∣∣∣
Cm(D)

. kn+2m−N0 ,

where b(x , k) ∈ C∞(D) independent of N0, b(x , k) = 0 if
q 6= n−, b(x , k) ∼ (2π)−n

∣∣detRL(x)
∣∣ kn + a1(x)kn−1 + · · · if

q = n−.
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Applications of I.

I. implies (i) P
(q)

k,≤k−N0
(x) ≤ Ckn, ∀x ∈ M, where C > 0 is a

constant independent of k.

(ii)

limk→∞ k−nP
(q)

k,≤k−N0
(x) = (2π)−n

∣∣detRL(x)
∣∣ 1M(q)(x), ∀x ∈ M.

lim
k→∞

k−ndimHq

≤k−N0
(M, Lk) = lim

k→∞
k−n

∫
M
P

(q)

k,≤k−N0
(x)dv(x)

Domi. Thm
=

∫
M

lim
k→∞

k−nP
(q)

k,≤k−N0
(x)dv(x)

= (2π)−n
∫
M(q)

∣∣∣detRL(x)
∣∣∣ dv(x).

We get semi-classical Weyl law:
dimHq

≤k−N0
(M, Lk) = (2π)−nkn

∫
M(q)

∣∣detRL(x)
∣∣ dv(x) + o(kn).

Since dimHq(M, Lk) ≤ dimHq

≤k−N0
(M, Lk), we get weak Morse

inequalities. strong Morse inequalities?
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Applications of I.

Lemma (easy)

∀q = 0, 1, 2, . . . , n, and ∀λ > 0,

q∑
j=0

(−1)q−jdimH j
0<µ≤λ(M, Lk) = dim ∂Hq

0<µ≤λ(M, Lk) ≥ 0

= 0 if q = n.

Proof.

For every µ > 0, the sequence

H0
µ(M, Lk)→ H1

µ(M, Lk)→ · · · → Hn
µ(M, Lk)→ 0

is exact.
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j=0
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≤k−N0
(M, Lk)
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q∑
j=0

(−1)q−j(2π)−nkn
∫
M(j)

∣∣∣detRL(x)
∣∣∣ dv(x) + o(kn).

We get strong Morse inequalities. When q = n, we get asymptotic
Riemann-Roch-Hirzebruch Theorem.
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=

q∑
j=0

(−1)q−jdimH j

≤k−N0
(M, Lk)−

q∑
j=0

(−1)q−jdimH j

0<µ≤k−N0
(M, Lk)

≤
q∑

j=0

(−1)q−jdimH j

≤k−N0
(M, Lk)
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q∑
j=0

(−1)q−j(2π)−nkn
∫
M(j)

∣∣∣detRL(x)
∣∣∣ dv(x) + o(kn).

We get strong Morse inequalities. When q = n, we get asymptotic
Riemann-Roch-Hirzebruch Theorem.
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Applications of II.

Assume that D = M = M(n−).

(a) If q 6= n−. Then P
(q)
k (x) ≤ P

(q)

k,≤k−N0
(x) . kn−N0 , for every

N0 > 1. Thus P
(q)
k (x) = O(k−∞). Hence

dimHq(M, Lk) = O(k−∞). Since dimHq(M, Lk) is an integer,
dimHq(M, Lk) = 0 if k large. We obtain
Kodaira-Andreotti-Grauert vanishing Theorem.

(b)If q = n−. By Hörmander’s L2 estimates, �(q)
k has spectral

gap≥ Ck, C > 0 independent of k . Thus, for k large,

P
(q)
k = P

(q)

k,≤k−N0
, ∀N0 > 1. Hence∣∣∣P(q)

k (x)− b(x , k)
∣∣∣
Cm(M)

=
∣∣∣P(q)

k,≤k−N0
(x)− b(x , k)

∣∣∣
Cm(M)

. kn+2m−N0 , ∀N0 > 1.

We obtain Bergman kernel asymptotic expansions.
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(b)If q = n−. By Hörmander’s L2 estimates, �(q)
k has spectral

gap≥ Ck, C > 0 independent of k . Thus, for k large,

P
(q)
k = P

(q)

k,≤k−N0
, ∀N0 > 1. Hence∣∣∣P(q)

k (x)− b(x , k)
∣∣∣
Cm(M)

=
∣∣∣P(q)

k,≤k−N0
(x)− b(x , k)

∣∣∣
Cm(M)

. kn+2m−N0 , ∀N0 > 1.

We obtain Bergman kernel asymptotic expansions.

Chin-Yu Hsiao Semi-classical analysis in complex geometry: Bergman kernel asymptotics for lower energy forms



Applications of II.

Assume that D = M = M(n−).

(a) If q 6= n−. Then P
(q)
k (x) ≤ P

(q)

k,≤k−N0
(x) . kn−N0 , for every

N0 > 1. Thus P
(q)
k (x) = O(k−∞). Hence

dimHq(M, Lk) = O(k−∞). Since dimHq(M, Lk) is an integer,
dimHq(M, Lk) = 0 if k large. We obtain
Kodaira-Andreotti-Grauert vanishing Theorem.
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Remark

By using our main result II, we can establish Bergman kernel
asymptotic expansions for semi-positive line bundles and big line
bundles.

The proof of the main results base on semi-classical WKB method

for Kodaira Laplacian �(q)
k . We refer the readers to the paper by

Hsiao-Marinescu: Asymptotics of spectral function of lower energy
forms and Bergman kernel of semi-positive and big line bundles,
Commun. Anal. Geom. 22 (2014), No. 1, 1–108.
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