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fiber metric. RL: canonical curvature two form induced by ht.
Local picture: s: local trivializing section of L. |s|3, = e=2, ¢:
local smooth function. RL =200¢. [L0D¢] represents the first
Chern class.

(LK, At = M: k-th tensor power of (L, ht). L¥: line bundle. s*:
local section of L. ‘Sk‘iLk = e~2k¢ RL* = 2kHD .
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o= QUM LR — Q%ML LF) — QYL (M, LK) — -

QOA(M, LK) := C(M, TO9M @ LK),
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Dolbeault cohomology group

O-complex:

o= QUM LR — Q%ML LF) — QYL (M, LK) — -

QOI(M, LK) .= C®(M, T*0IM @ LF).
complex: 52 =0.
g-th Dolbeault collorgologykgro%p: .
.00,9 ,q+
HI(M, L) = e ety .09
HO(M, L¥): the space of global holomorphic sections.
Main theme in Complex Geometry: Study H°(M, L¥) when k
large. k & % h: Planck constant. k — co =2 h — 0.
By Lioulle’s theorem, any global holomorphic function is a
constant (M is compact).
We look for holomorphic sections!
In Complex Geometry, it is crucial to be able to construct many
holomorphic sections.
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1930) that dim HO(M, LK) < k".
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Riemann-Roch-Hirzebruch Theorem or Atiyah-Singer index
Theorem:
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Kodaira showed that if L is positive, i.e. Rt > 0 (L is ample), then
we can produce many holomorphic sections.

Kodaira: dim HO(M, LX) ~ k" for k large. It is well-known (Siegel,
1930) that dim HO(M, LK) < k".

The idea of Kodaira: Kodaira showed that if L is positive then
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Kodaira vanishing Theorems (1950-1960)

Kodaira showed that if L is positive, i.e. Rt > 0 (L is ample), then
we can produce many holomorphic sections.

Kodaira: dim HO(M, LX) ~ k" for k large. It is well-known (Siegel,
1930) that dim HO(M, LK) < k".

The idea of Kodaira: Kodaira showed that if L is positive then
dim H9(M, LX) = 0 if k large, ¢ > 1. (Kodaira-Serre vanishing
Theorem).

Riemann-Roch-Hirzebruch Theorem or Atiyah-Singer index
Theorem:

ZJ’-’ZO(—I)fdim HI(M, LK) = Sy Td (TM)ch (L5).

Td (TM): Todd class of TM, ch (L¥): Chern character of L.
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Kodaira vanishing Theorems (1950-1960)

Kodaira showed that if L is positive, i.e. Rt > 0 (L is ample), then
we can produce many holomorphic sections.

Kodaira: dim HO(M, LX) ~ k" for k large. It is well-known (Siegel,
1930) that dim HO(M, LK) < k".

The idea of Kodaira: Kodaira showed that if L is positive then
dim H9(M, LX) = 0 if k large, ¢ > 1. (Kodaira-Serre vanishing
Theorem).

Riemann-Roch-Hirzebruch Theorem or Atiyah-Singer index
Theorem:

Zfzo(—l)fdim H/(M, LK) = Sy Td (TM)ch (L¥).

Td(TM)' Todd class of TM, ch(Lk) Chern character of L.

= 37 o(=1Ydim H(M, LK) = G [ (/=TRL)" 4+ O(k™ 1),
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Kodaira vanishing Theorems (1950-1960)

Kodaira showed that if L is positive, i.e. Rt > 0 (L is ample), then

we can produce many holomorphic sections.

Kodaira: dim HO(M, LX) ~ k" for k large. It is well-known (Siegel,

1930) that dim HO(M, LK) < k".

The idea of Kodaira: Kodaira showed that if L is positive then

dim H9(M, LX) = 0 if k large, ¢ > 1. (Kodaira-Serre vanishing

Theorem).

Riemann-Roch-Hirzebruch Theorem or Atiyah-Singer index

Theorem:

ZJ’-’ZO(—I)fdim HI(M, L¥) = [,, Td(TM)ch (L¥).

Td(TM)' Todd class of TM, ch(Lk) Chern character of L.

= 37 o(=1Ydim H(M, LK) = G [ (/=TRL)" 4+ O(k™ 1),
= If RL > 0 then dim HO(M, LK) ~ k",

Chin-Yu Hsiao Semi-classical analysis in complex geometry: Bergman kernel a



Grauert-Riemenschneider conjecture (1970)

Conjecture (Grauert-Riemenschneider conjecture)

If L is semi-positive (RL > 0) and positive at one point, then L is
big.
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Grauert-Riemenschneider conjecture (1970)

Conjecture (Grauert-Riemenschneider conjecture)

If L is semi-positive (RE > 0) and positive at one point, then L is
big.

L is big if dim H(M, LK) ~ k™ for k large.
Motivation of GR conjecture: generalize Kodaira embedding
Theorem to Moishezon manifolds.
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Grauert-Riemenschneider conjecture (1970)

Conjecture (Grauert-Riemenschneider conjecture)

If L is semi-positive (RE > 0) and positive at one point, then L is
big.

L is big if dim H(M, LK) ~ k™ for k large.

Motivation of GR conjecture: generalize Kodaira embedding
Theorem to Moishezon manifolds.

Moishezon manifolds: bimeromorphic to projective submanifolds.
Y.-T. Siu (1983) and J. P. Demailly (1984) solved this conjecture.
Demailly solved this conjecture by using his holomorphic Morse
inequalities.

Chin-Yu Hsiao Semi-classical analysis in complex geometry: Bergman kernel a



Demailly’s Morse inequalities

weakly Morse inequalities: Vg =0,1,2,...,n,

dim HI(M, L¥) < (27r)”k"/

‘det RL(X)’ dv(x) + o(k"). (1)
M(q)
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Demailly’s Morse inequalities

weakly Morse inequalities: Vg =0,1,2,...,n,
dim HI(M, L¥) < (27r)"k"/ [det RL(x)] dv(x) + o(k"). (1)
M(q)

strong Morse inequalities: Vg =0,1,2,...,n,

Zq:(—l)q*fdimHJ(M,Lk)
=, )
9= (2m) k" det RE(x)| dv(x k™).
<30 . et R0 av) 067
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Demailly’s Morse inequalities

weakly Morse inequalities: Vg =0,1,2,...,n,
dim HI(M, L¥) < (27r)"k"/ [det RL(x)] dv(x) + o(k"). (1)
M(q)

strong Morse inequalities: Vg =0,1,2,...,n,

Zq:(—l)q*fdimHJ(M,Lk)
=, )
9= (2m) k" det RE(x)| dv(x k™).
<30 . et R0 av) 067

Notations: dv(x): volume form on M induced by ©.
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Notations: dv(x): volume form on M induced by ©.

det RL(x) = (F(R)(HX)) . real number.
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Demailly’s Morse inequalities

weakly Morse inequalities: Vg =0,1,2,...,n,
dim HI(M, L¥) < (27r)"k"/ [det RL(x)] dv(x) + o(k"). (1)
M(q)

strong Morse inequalities: Vg =0,1,2,...,n,

Zq:(—l)q*fdimHJ(M,Lk)
=, )
9= (2m) k" det RE(x)| dv(x k™).
<30 . et R0 av) 067

Notations: dv(x): volume form on M induced by ©.

det RL(x) = (F(R)(HX)) . real number.

M(j) ={x € M; R:(x) has exactly j negative eigenvalues

and n — j positive enginvalues}.
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Demailly’s Morse inequalities

Assume RL > 0.
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Demailly’s Morse inequalities

Assume RL > 0. Then M(q) =0, Vg > 1.
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Demailly’s Morse inequalities

Assume RL > 0. Then M(q) =0, Vg > 1.
Take g =1 in (2), we get
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Demailly’s Morse inequalities

Assume RL > 0. Then M(q) =0, Vg > 1.
Take g =1 in (2), we get

— dim HO(M, L¥) + dim H* (M, L¥)

<(@ny (- [

’det RL(X)‘ dv(x) + o(K").
M(0)
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Demailly’s Morse inequalities

Assume RL > 0. Then M(q) =0, Vg > 1.
Take g =1 in (2), we get
— dim HO(M, L¥) + dim H* (M, L¥)

<(@ny (- [

’det RL(X)‘ dv(x) + o(K").
M(0)

If RL is positive at one point (|M(0)| > 0)

Chin-Yu Hsiao Semi-classical analysis in complex geometry: Bergman kernel a



Demailly’s Morse inequalities

Assume RL > 0. Then M(q) =0, Vg > 1.
Take g =1 in (2), we get

— dim HO(M, L¥) + dim H* (M, L¥)

<(@ny (- [

’det RL(X)‘ dv(x) + o(K").
M(0)

If RL is positive at one point (|[M(0)| > 0) then
dim HO(M, L¥) ~ k.
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Demailly’s Morse inequalities

Assume RL > 0. Then M(q) =0, Vg > 1.
Take g =1 in (2), we get

— dim HO(M, L¥) + dim H* (M, L¥)

<(@ny (- [

’det RL(X)‘ dv(x) + o(K").
M(0)

If RL is positive at one point (|[M(0)| > 0) then
dim HO(M, L*) ~ k". We solve GR conjecture.
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Demailly’s Morse inequalities

Assume RL > 0. Then M(q) =0, Vg > 1.
Take g =1 in (2), we get

— dim HO(M, L¥) + dim H* (M, L¥)
< @)k (-1) |

’det RL(X)‘ dv(x) + o(K").
M(0)
If RL is positive at one point (|[M(0)| > 0) then

dim HO(M, L*) ~ k". We solve GR conjecture.

From weak Morse inequalities, we get dim HI(M, LK) = o(k™),
Vg>1
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Demailly’s Morse inequalities

Assume RL > 0. Then M(q) =0, Vg > 1.
Take g =1 in (2), we get

— dim HO(M, L¥) + dim H* (M, L¥)
< @)k (-1) |

’det RL(X)‘ dv(x) + o(K").
M(0)
If RL is positive at one point (|[M(0)| > 0) then

dim HO(M, L*) ~ k". We solve GR conjecture.

From weak Morse inequalities, we get dim HI(M, LK) = o(k™),
Vg > 1 (asymptotic vanishing Theorems).

Chin-Yu Hsiao Semi-classical analysis in complex geometry: Bergman kernel a



Demailly’s Morse inequalities

Assume RL > 0. Then M(q) =0, Vg > 1.
Take g =1 in (2), we get

— dim HO(M, L¥) + dim H* (M, L¥)

<(@ny (- [

’det RL(X)‘ dv(x) + o(K").
M(0)
If RL is positive at one point (|[M(0)| > 0) then

dim HO(M, L*) ~ k". We solve GR conjecture.

From weak Morse inequalities, we get dim HI(M, LK) = o(k™),
Vg > 1 (asymptotic vanishing Theorems).

Combining this with Riemann-Roch-Hirzebruch Theorem, we can
also solve GR conjecture.
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Bergman kernel asymptotics (1990-)

(-]+),k: L* inner product on Q%9(M, L¥) induced by ht and
(-1-)-
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Bergman kernel asymptotics (1990-)

(-]+),k: L* inner product on Q%9(M, L¥) induced by ht and
(1)

Locally f =sk®@u, g=s"®v, (flg),u = [(u|v)e 2k?dy.
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Bergman kernel asymptotics (1990-)

(+]-),x: L2 inner product on Q%9(M, L¥) induced by h" and
(1)

Locally f =sk®@u, g =sk® v, (f|g)th = [(u] v)e 2kedy.
0 : Q%9(M, LK) — QOa+I(m, LK).

Chin-Yu Hsiao Semi-classical analysis in complex geometry: Bergman kernel a



Bergman kernel asymptotics (1990-)

(+]-),x: L2 inner product on Q%9(M, L¥) induced by h" and
(1)

Locally f =sk®@u, g =sk® v, (f|g)th = [(u] v)e 2kedy.

0 : QYI(M, LK) — QOatL(Mm, LF).

3" QUL (M, LK) — Q%9(M, L¥): formal adjoit of & with respect
to ()
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Bergman kernel asymptotics (1990-)

(-]+),k: L* inner product on Q%9(M, L¥) induced by ht and
I<_o|ca>lly f=s"Qu g=s"xv, (flg)yw = f(ul v)e 2kedy.

0 : Q%9(M, LK) — QOa+I(m, LK).

3" QUL (M, LK) — Q%9(M, L¥): formal adjoit of & with respect
to (-] ) k-

Kodaira Laplacian

O =398 +9°9: Q9(M, Lk) — QO9(M, L),
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Bergman kernel asymptotics (1990-)

(-]+),k: L* inner product on Q%9(M, L¥) induced by ht and
I<_o|ca>lly f=s"Qu g=s"xv, (flg)yw = f(ul v)e 2kedy.

0 : Q%9(M, LK) — QOa+I(m, LK).

3" QUL (M, LK) — Q%9(M, L¥): formal adjoit of & with respect
to (-] ) k-

Kodaira Laplacian

O =98 + 979 : QI(M, Lk) — QO9(M, L),
Extend Diq) to L? space:
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Bergman kernel asymptotics (1990-)

(-]+),k: L* inner product on Q%9(M, L¥) induced by ht and
I<_o|ca>lly f=s"Qu g=s"xv, (flg)yw = f(ul v)e 2kedy.

0 : Q%9(M, LK) — QOa+I(m, LK).

3" QUL (M, LK) — Q%9(M, L¥): formal adjoit of & with respect
to (-] ) k-

Kodaira Laplacian

O =898 +9°9: Q9(M, Lk) — QO9(M, L),
Extend Df(q) to L? space:
O : Dom O ¢ 12, (M, LK) — 12, (M, L¥),

Dom (¥ = {u € L3 (M, LK), OPu e 13) (M, Lk)}.
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Bergman kernel asymptotics (1990-)

(-]+),k: L* inner product on Q%9(M, L¥) induced by ht and
(1o
Locally f =sk®@u, g=sk®v, (flg)yw = f(ul v)e 2kedy.
0 : Q%9(M, LK) — QOa+I(m, LK).
3" QUL (M, LK) — Q%9(M, L¥): formal adjoit of & with respect
to (-] ) k-
Kodaira Laplacian
O =898 +9°9: Q9(M, Lk) — QO9(M, L),
Extend Df(q) to L? space:
O : Dom O ¢ 12, (M, LK) — 12, (M, L¥),
Dom (¥ = {u € L3 (M, LK), OPu e 13) (M, Lk)}.

Hodge theory:
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Bergman kernel asymptotics (1990-)

(-]+),k: L* inner product on Q%9(M, L¥) induced by ht and
(1o
Locally f =sk®@u, g=sk®v, (flg)yw = f(ul v)e 2kedy.
0 : Q%9(M, LK) — QOa+I(m, LK).
3" QUL (M, LK) — Q%9(M, L¥): formal adjoit of & with respect
to (-] ) k-
Kodaira Laplacian
O =898 +9°9: Q9(M, Lk) — QO9(M, L),
Extend Df(q) to L? space:
O : Dom O ¢ 12, (M, LK) — 12, (M, L¥),
Dom (¥ = {u € L3 (M, LK), OPu e 13) (M, Lk)}.

Hodge theory: Ker Dg(q) =~ HI(M, L¥).
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Bergman kernel asymptotics (1990-)

(1) e L? inner product on Q%9(M, LX) induced by ht and
(1)
Locally f =s*®@u, g =sk @ v, (f|g),u = [(u|v)e* ®dv.
0 : Q%9(M, LK) — QOa+I(m, LK).
3" QUL (M, LK) — Q%9(M, L¥): formal adjoit of & with respect
to ()
Kodaira Laplacian
O =898 +9°9: Q9(M, Lk) — QO9(M, L),
Extend Df(q) to L? space:
O : Dom O ¢ 12, (M, LK) — 12, (M, L¥),
Dom (¥ = {u € L3 (M, LK), OPu e 13) (M, Lk)}.
Hodge theory: Ker Dg(q) =~ HI(M, L¥).
dim HI(M, LK) = Ker (¥ < oo
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Bergman kernel asymptotics (1990-)

(-]+),k: L* inner product on Q%9(M, L¥) induced by ht and
(1)
Locally f =sk®@u, g=sk®v, (flg)yw = f(ul v)e 2kedy.
0 : Q%9(M, LK) — QOa+I(m, LK).
3" QUL (M, LK) — Q%9(M, L¥): formal adjoit of & with respect
to ()
Kodaira Laplacian
O =898 +9°9: Q9(M, Lk) — QO9(M, L),
Extend Df(q) to L? space:
O : Dom O ¢ 12, (M, LK) — 12, (M, L¥),
Dom (¥ = {u € L3 (M, LK), OPu e 13) (M, Lk)}.
Hodge theory: Ker Dg(q) =~ HI(M, L¥).
dim HI(M, %) = Ker O(® < 0o, KerO(® ¢ Q09(M, L¥).
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Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).
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Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).
Bergman kernel function P,Eq)(x) = Zj‘-jkl ]ﬂ(x)|iLk
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Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).

Bergman kernel function P,Eq)(x) = Z}il ]ﬂ(x)|iLk

Since [|f(x)|2 dv(x) =1,/ =1,2,....dx,

Chin-Yu Hsiao Semi-classical analysis in complex geometry: Bergman kernel a



Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).

Bergman kernel function P,Eq)(x) = Z}il ]ﬂ(x)|iLk

Since [|f(x)|2 dv(x) =1,/ =1,2,....dx,

[ P9 (x)dv(x) = di = dimKer 0% = dim HI(M, LK),
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Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).

Bergman kernel function P,Eq)(x) = Z}il ]ﬂ(x)|iLk

Since [|f(x)|2 dv(x) =1,/ =1,2,....dx,

[ P9 (x)dv(x) = di = dimKer 0% = dim HI(M, LK),

Assume R’ is non-degenerate of constant signature (n_, n;) on M.
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Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).

Bergman kernel function P,Eq)(x) = Z}il ]ﬂ(x)|iLk

Since [|f(x)|2 dv(x) =1,/ =1,2,....dx,

[ P9 (x)dv(x) = di = dimKer 0% = dim HI(M, LK),

Assume R’ is non-degenerate of constant signature (n_, n;) on M.
n_: number of negative eigenvalues of RL.
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Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).

Bergman kernel function P,Eq)(x) = Z}il ]ﬂ(x)|iLk

Since [|f(x)|2 dv(x) =1,/ =1,2,....dx,

[ P9 (x)dv(x) = di = dimKer 0% = dim HI(M, LK),

Assume R’ is non-degenerate of constant signature (n_, n;) on M.

n_: number of negative eigenvalues of RL.
ny: number of positive eigenvalues of RL.

Chin-Yu Hsiao Semi-classical analysis in complex geometry: Bergman kernel a



Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).

Bergman kernel function P,Eq)(x) = Z}il ]ﬂ(x)|iLk

Since [|f(x)|2 dv(x) =1,/ =1,2,....dx,

[ P9 (x)dv(x) = di = dimKer 0% = dim HI(M, LK),

Assume R’ is non-degenerate of constant signature (n_, n;) on M.

n_: number of negative eigenvalues of RL.
ny: number of positive eigenvalues of R, n_ +ny = n.
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Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).

Bergman kernel function P,Eq)(x) = Z}il ]ﬂ(x)|iLk

Since [|f(x)|2 dv(x) =1,/ =1,2,....dx,

[ P9 (x)dv(x) = di = dimKer 0% = dim HI(M, LK),

Assume R’ is non-degenerate of constant signature (n_, n;) on M.
n_: number of negative eigenvalues of RL.

ny: number of positive eigenvalues of R, n_ +ny = n.
I. Kodaira-Andreotti-Grauert vanishing Theorem:
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Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).

Bergman kernel function P,Eq)(x) = Z}il ]ﬂ(x)|iLk

Since [|f(x)|2 dv(x) =1,/ =1,2,....dx,

[ P9 (x)dv(x) = di = dimKer 0% = dim HI(M, LK),

Assume R’ is non-degenerate of constant signature (n_, n;) on M.
n_: number of negative eigenvalues of RL.

ny: number of positive eigenvalues of R, n_ +ny = n.

|. Kodaira-Andreotti-Grauert vanishing Theorem: If g # n_ then
dim H9(M, LX) = 0 for k large.
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Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).

Bergman kernel function P,Eq)(x) = Z}il ]ﬂ(x)|iLk

Since [|f(x)|2 dv(x) =1,/ =1,2,....dx,

[ P9 (x)dv(x) = di = dimKer 0% = dim HI(M, LK),

Assume R’ is non-degenerate of constant signature (n_, n;) on M.
n_: number of negative eigenvalues of RL.

ny: number of positive eigenvalues of R, n_ +ny = n.

|. Kodaira-Andreotti-Grauert vanishing Theorem: If g # n_ then
dim H9(M, LX) = 0 for k large.

Hence P,Eq)(x) =0 if k large.
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Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).

Bergman kernel function P,Eq)(x) = Z}il ]ﬂ(x)|iLk

Since [|f(x)|2 dv(x) =1,/ =1,2,....dx,

[ P9 (x)dv(x) = di = dimKer 0% = dim HI(M, LK),

Assume R’ is non-degenerate of constant signature (n_, n;) on M.
n_: number of negative eigenvalues of RL.

ny: number of positive eigenvalues of R, n_ +ny = n.

|. Kodaira-Andreotti-Grauert vanishing Theorem: If g # n_ then
dim H9(M, LX) = 0 for k large.

Hence P,Eq)(x) =0 if k large.

l.If g=n_=0, ny =n (Rt >0).
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Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).

Bergman kernel function P,Eq)(x) = Z}il ]ﬂ(x)|iLk

Since [|f(x)|2 dv(x) =1,/ =1,2,....dx,

[ P9 (x)dv(x) = di = dimKer 0% = dim HI(M, LK),

Assume R’ is non-degenerate of constant signature (n_, n;) on M.
n_: number of negative eigenvalues of RL.

ny: number of positive eigenvalues of R, n_ +ny = n.

|. Kodaira-Andreotti-Grauert vanishing Theorem: If g # n_ then
dim H9(M, LX) = 0 for k large.

Hence P,Eq)(x) =0 if k large.

lLIf g=n_=0, ny =n (R >0). G. Tian (90) proved:

P,EO)(X) = (2m)~"k" |det R(x)| + O(k"~!) in C? topology
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Bergman kernel asymptotics (1990-)

Let {f,f,...,fy } orthonormal basis for Ker Dgf’) with respect to
(<) de = dimKerDS{q).

Bergman kernel function P,Eq)(x) = Z}il ]ﬂ(x)|iLk

Since [|f(x)|2 dv(x) =1,/ =1,2,....dx,

[ P9 (x)dv(x) = di = dimKer 0% = dim HI(M, LK),

Assume R’ is non-degenerate of constant signature (n_, n;) on M.
n_: number of negative eigenvalues of RL.

ny: number of positive eigenvalues of R, n_ +ny = n.

|. Kodaira-Andreotti-Grauert vanishing Theorem: If g # n_ then
dim H9(M, LX) = 0 for k large.

Hence P,Eq)(x) =0 if k large.

lLIf g=n_=0, n. =n (Rt >0). G. Tian (90) proved:

P,EO)(X) = (2m)~"k" |det R(x)| + O(k"~') in C? topology and
thereby proving a conjecture of Y.-T. Yau.
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Bergman kernel asymptotics (1990-)

Catlin (97), Zelditch (98) proved:
P,EO)(X) = (2m)"k" |det RE(x)| + a1(x)k" ! + ap(x)k" 2 + - -+ in
C*° topology.

Chin-Yu Hsiao Semi-classical analysis in complex geometry: Bergman kernel a



Bergman kernel asymptotics (1990-)

Catlin (97), Zelditch (98) proved:
P,EO)(X) = (2m)"k" |det RE(x)| + a1(x)k" ! + ap(x)k" 2 + - -+ in
C*° topology.

Applications :
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Catlin (97), Zelditch (98) proved:

P,EO)(X) = (2m)"k" |det RE(x)| + a1(x)k" ! + ap(x)k" 2 + - -+ in
C*° topology.

Applications : (1) k large, Vx € M, P,((O)(x) # 0.
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Bergman kernel asymptotics (1990-)

Catlin (97), Zelditch (98) proved:

PO(x) = (2m)~"k" |det RL(x)| + a1 (x)k"L + ap(x)k"2 + - - in
C®° topology.

Applications : (1) k large, Vx € M, P,((O)(x) # 0. The map

x € M = [f(x),..., fy(x)] € CP%! is well-defined (Kodaira
embedding Theorem).
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Bergman kernel asymptotics (1990-)

Catlin (97), Zelditch (98) proved:

PO(x) = (2m)~"k" |det RL(x)| + a1 (x)k"L + ap(x)k"2 + - - in
C®° topology.

Applications : (1) k large, Vx € M, P,((O)(x) # 0. The map

x € M = [f(x),..., fy(x)] € CP%! is well-defined (Kodaira
embedding Theorem). Note that all the components transform by
the same scalar under a change of frame.
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Bergman kernel asymptotics (1990-)

Catlin (97), Zelditch (98) proved:

PO(x) = (2m)~"k" |det RL(x)| + a1 (x)k"L + ap(x)k"2 + - - in
C®° topology.

Applications : (1) k large, Vx € M, P,((O)(x) # 0. The map

x € M = [f(x),..., fy(x)] € CP%! is well-defined (Kodaira
embedding Theorem). Note that all the components transform by
the same scalar under a change of frame. (2) The coefficients a,
ay play important role in the investigations about the relation
between canonical metrics in Kaher geometry and stability in
algebraic geometry (S. K. Donaldson).
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Bergman kernel asymptotics (1990-)

Catlin (97), Zelditch (98) proved:

PO(x) = (2m)~"k" |det RL(x)| + a1 (x)k"L + ap(x)k"2 + - - in
C®° topology.

Applications : (1) k large, Vx € M, P,((O)(x) # 0. The map

x € M = [f(x),..., fy(x)] € CP%! is well-defined (Kodaira
embedding Theorem). Note that all the components transform by
the same scalar under a change of frame. (2) The coefficients a,
ay play important role in the investigations about the relation
between canonical metrics in Kaher geometry and stability in
algebraic geometry (S. K. Donaldson).

H.If g=n_>0.
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Bergman kernel asymptotics (1990-)

Catlin (97), Zelditch (98) proved:

PO(x) = (2m)~"k" |det RL(x)| + a1 (x)k"L + ap(x)k"2 + - - in
C®° topology.

Applications : (1) k large, Vx € M, P,((O)(x) # 0. The map

x € M = [f(x),..., fy(x)] € CP%! is well-defined (Kodaira
embedding Theorem). Note that all the components transform by
the same scalar under a change of frame. (2) The coefficients a,
ay play important role in the investigations about the relation
between canonical metrics in Kaher geometry and stability in
algebraic geometry (S. K. Donaldson).

[II.1f g = n_ > 0. Berman-Sjostrand (06), Ma-Marinescu (06):
P (x) = (27)~"k" |det RE(x)| + a1(x)k"! + ay(x)k "2 + -~ in
C° topology.
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Terminology

Spec Ds(q): Spectrum of Df(q).
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Terminology

Spec Ds(q): Spectrum of Df(q).
Spec DS(q) = {aII the eigenvalues of D&q)}: discrete subset of
[0, ool
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Terminology

Spec Ds(q): Spectrum of Df(q).

Spec DS(q) = {aII the eigenvalues of D&q)}: discrete subset of
[0, ool

VA € Spec D(q),

HI(M, LK) = {f € Dom O(?; OWWF = Af} c QO9(M, LK).
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Terminology

Spec Ds(q): Spectrum of Df(q).
Spec DS(q)
[0, ool
VA € Spec D(q),

HI(M, LK) = {f € Dom O(?; OWWF = Af} c QO9(M, LK).
dim HY (M, L*) < .

= {aII the eigenvalues of D&q)}: discrete subset of
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Terminology

Spec Ds(q): Spectrum of Df(q).

Spec DS(q) = {aII the eigenvalues of D&q)}: discrete subset of
[0, ool

VA € Spec D(q),

HI(M, LK) = {f € Dom O(?; O f = Af} c QO9(M, LK).
dim HY (M, L*) < .

For A >0, put HZ,(M, LK) = @< HI (M, L),
Hg<u</\(l\/l, L¥) ;@O<HSAH3(M, L¥).
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Terminology

Spec Ds(q): Spectrum of Df(q).

Spec DS(q) = {aII the eigenvalues of D&q)}: discrete subset of
[0, ool

VA € Spec D(q),

HI(M, LK) = {f € Dom O(?; O f = Af} c QO9(M, LK).
dim HY (M, L*) < .

For A >0, put HZ,(M, LK) = @< HI (M, L),
Hg<u</\(l\/l, L¥) ;@0<uSAHﬁ(M L¥).

Spectral function P,(j%)\(x) = Z 1 lgi(x )|th,
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Terminology

Spec Ds(q): Spectrum of Ds(q).

Spec DS(q) = {aII the eigenvalues of D&q)}: discrete subset of
[0, ool

VA € Spec D(q),

HI(M, LK) = {f € Dom O(?; O f = Af} c QO9(M, LK).
dim HY (M, L*) < .

For A >0, put HZ, (M, L¥) = @o<,<aHi(M, LX),
Hg<u</\(l\/l, L¥) = @o<u<rHi(M, L¥).

Spectral function P,Eq;\(x) = > gi(x )|th,

{g1,...,8&m,}: orthonormal basis for H, (M, L¥).
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Terminology

Spec Ds(q): Spectrum of Ds(q).

Spec DS(q) = {aII the eigenvalues of D&q)}: discrete subset of
[0, ool

VA € Spec D(q),

HI(M, LK) = {f € Dom O(?; O f = Af} c QO9(M, LK).
dim HY (M, L*) < .

For A >0, put HZ, (M, L¥) = @o<,<aHi(M, LX),
Hg<u</\(l\/l, L¥) = @o<u<rHi(M, L¥).

Spectral function P,(j%)\(x) = Z 1 lgi(x )|th,
{g1,...,8&m,}: orthonormal basis for H, (M, L¥).

dim HZ, (M, L) = Ju Plgql/\ dv(x).
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Main results, Hsiao-Marinescu, Commun. Anal. Geom. 22

(2014), No. 1, 1-108.

Fix Ng > 1.
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Main results, Hsiao-Marinescu, Commun. Anal. Geom. 22

(2014), No. 1, 1-108.

Fix Ng > 1.
I. Ve > 0, dko > 0, such that Vk > ko,

[P () = 2m) "

det RL(X)‘ lM(q)(x)‘ <e VxeM,
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Main results, Hsiao-Marinescu, Commun. Anal. Geom. 22

(2014), No. 1, 1-108.

Fix Ng > 1.
I. Ve > 0, dko > 0, such that Vk > ko,

[P () = 2m) "

det RL(X)‘ lM(q)(x)‘ <e VxeM,

where 1yq)(x) = 1 if x € M(q), Lyq)(x) = 0 if x & M(q).
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Main results, Hsiao-Marinescu, Commun. Anal. Geom.

(2014), No. 1, 1-108.

Fix Ng > 1.
I. Ve > 0, dko > 0, such that Vk > ko,

[P () = 2m) "

det RL(X)‘ lM(q)(x)‘ <e VxeM,

where 1yq)(x) = 1 if x € M(q), Lyq)(x) = 0 if x & M(q).
II. Assume that R’ is non-degenerate of constant signature
(n—,ny) on an open set D € M (D C M(n_)).
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Main results, Hsiao-Marinescu, Commun. Anal. Geom.

(2014), No. 1, 1-108.

Fix Ng > 1.
I. Ve > 0, dko > 0, such that Vk > ko,

kP g () = (2m)

L(x)‘ 1M(q)(x)‘ <& WxeM,

where 1yq)(x) = 1 if x € M(q), Lyq)(x) = 0 if x & M(q).
II. Assume that R’ is non-degenerate of constant signature

(n_,ny) on an open set D € M (D C M(n_)). Then, for every
m € NJ{0},

k<k wo (X) = b(x, )c m(D) ~ < KR Mo,
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Main results, Hsiao-Marinescu, Commun. Anal. Geom.

(2014), No. 1, 1-108.

Fix Ng > 1.
I. Ve > 0, dko > 0, such that Vk > ko,

kP g () = (2m)

L(x)‘ 1M(q)(x)‘ <& WxeM,

where 1yq)(x) = 1 if x € M(q), Lyq)(x) = 0 if x & M(q).
II. Assume that R’ is non-degenerate of constant signature

(n_,ny) on an open set D € M (D C M(n_)). Then, for every
m € NJ{0},

< kn+2m NO
k<k No(X) ( )‘C (D)

where b(x, k) € C*°(D) independent of Ny, b(x, k) = 0 if

q # n_, b(x, k) ~ (2m)~" [det RE(x)| k" + ar(x)k™ L + - - if
g=n_.

Chin-Yu Hsiao

Semi-classical analysis in complex geometry: Bergman kernel a



Applications of I.

Pi?;k,,\,o(x) < Ck",Vx € M, where C >0 is a

constant independent of k.

. implies (i)
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Applications of I.

Pi?;k,,\,o(x) < Ck",Vx € M, where C >0 is a

constant independent of k. (ii)

liMksoo kP (x) = (27) 7" |det RE(x)| Lyigq)(x), ¥x € M.

. implies (i)
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Applications of I.

. implies (i) Plgqik Ny (X) < Ck", ¥x € M, where C > 0is a
constant independent of k. (ii)
limy_so0 k™ ”Pl((qik wp (X) = (2m) " |det RE(x)| Lpg) (X), Vx € M.

Jlim k="dim HZ (M, Lk):kIer;ok_”/AAP(q) iy (X)dv(x)

k,<k
Doml. Thm n
L /M lim k-~ Plﬁ‘ﬂk o (X)dv ()

)
k—o0

=(2m)™" /M(q) ’det RL(X)) dv(x).

Chin-Yu Hsiao Semi-classical analysis in complex geometry: Bergman kernel a



Applications of I.

P (x) < Ck", Vx € M, where C >0 is a

k,<k—No
constant independent of k. (i)

limy_so0 k™ ”Pl((qik wp (X) = (2m) " |det RE(x)| Lpg) (X), Vx € M.

. implies (i)

Jlim k="dim HZ (M, Lk):kIer;ok_”/AAPiq) iy (X)dv(x)

<k
Doml. Thm n
L /M lim k="P) L (x)dv(x)

k—o00

=(2m)™" /M(q) ’det RL(X)) dv(x).

We get semi-classical Weyl law:
dim H? (M, LK) = (2m)~"k" fM( ) ’det RE( )’ dv(x) + o(k").

<k—No
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Applications of I.

. implies (i) P;Eqik Ny (X) < Ck", ¥x € M, where C > 0is a
constant independent of k. (ii)

limy_so0 k™ ”Pl((qik wp (X) = (2m) " |det RE(x)| Lpg) (X), Vx € M.

Jlim k="dim HZ (M, Lk):kIer;ok_”/AAPiq) iy (X)dv(x)

<k
Dom":Thm/ im kP9 (x)dv(x)
M

koo k,<k—No

=(2m)™" /M(q) ’det RL(X)) dv(x).

We get semi-classical Weyl law:
dim HZ, (M, LK) = (2m)7"K" [yyq |det RE(x)] dv(x) + o(k").
Since dim H9(M, L¥) < dim H<k_ no (M, LK), we get weak Morse
inequalities. -
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Applications of I.

. implies (i) P;Eqik Ny (X) < Ck", ¥x € M, where C > 0is a
constant independent of k. (ii)

limy_so0 k™ ”Pl((qik wp (X) = (2m) " |det RE(x)| Lpg) (X), Vx € M.

Jlim k="dim HZ (M, Lk):kIer;ok_”/AAPiq) iy (X)dv(x)

<k
Dom":Thm/ im kP9 (x)dv(x)
M

koo k,<k—No

=(2m)™" /M(q) ’det RL(X)) dv(x).

We get semi-classical Weyl law:

dim HZ, (M, LK) = (2m)7"K" [yyq |det RE(x)] dv(x) + o(k").
Since dim H9(M, L¥) < dim H<k_ no (M, LK), we get weak Morse
inequalities. strong Morse inequalities?
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Applications of I.

Lemma (easy)
Vg=0,1,2,...,n, and VA > 0,

q
(—1)9dim Hj er(M, LK) = dim IHg_, (M, LFy>0
=0

J
=0ifqg=n.
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Applications of I.

Lemma (easy)
Vg=0,1,2,...,n, and VA > 0,

q
(1) dim Hy_, (M, L¥) = dim OHg_, (M, L¥) > 0
Jj=0

=0ifqg=n.

For every . > 0, the sequence

0 k 1 k n k
HO(M, LX) — HE(M, LX) = - — HI(M, LK) = 0

is exact. ]
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Applications of I.

M-

(—1)9dim H/ (M, L¥)

Jj=0
= (-1)97dim H. o (M, L) = (~1)7dim H) e ieno (M, L%
j=0 j=0

(=1)9Jdim H.,_, (M, L¥)

<k=Mo

-

-
Il
o

I
M=

(—1)77 (2r)~"k" /M ) ‘det RL(X)‘dv(x)—i-o(k”).

—.
o
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Applications of I.

M-

(—1)9dim H/ (M, L¥)

-
I
o

q
(—1)9dim H._y, (M, LX) — > (1) dim H
j=0

<u§k—N0(M7 L¥)

IA

M- 1Y

-
Il
o

(=1)9Jdim H.,_, (M, L¥)

<k=Mo

I
M=

(—1)77 (2r)~"k" /M ) ‘det RL(X)‘dv(x)—i-o(k”).

—.
o

We get strong Morse inequalities.
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Applications of I.

M-

(—1)9dim H/ (M, L¥)

-
I
o

q
(—1)9dim H._y, (M, LX) — > (1) dim H
j=0

<u§k—N0(M7 L¥)

IA

M- 1Y

-
Il
o

(=1)9Jdim H.,_, (M, L¥)

<k=Mo

I
M=

(—1)77 (2r)~"k" /M ) ’det RL(x)‘dv(x)—i—o(k”).

—.
o

We get strong Morse inequalities. When g = n, we get asymptotic
Riemann-Roch-Hirzebruch Theorem.
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Applications of II.

Assume that D = M = M(n_).
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Applications of II.

Assume that D = M = M(n_).
(a) If g # n_.
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Applications of II.

Assume that D = M = M(n_).
(a) If g # n_. Then P,(f’)(x) < p9 (x) < k"=No, for every

k,<k—No
No > 1.
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Applications of II.

Assume that D = M = M(n_).

(a) If g # n_. Then P,(f’)(x) < Plg?ék*"’o (x) < k"=No, for every

No > 1. Thus P{%(x) = O(k=>). Hence
dim HI(M, L¥) = O(k=°).
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Applications of II.

Assume that D = M = M(n_).
(a) If g # n_. Then P,(f’)(x) < p9 (x) < k"=No, for every

k,<k—No
No > 1. Thus P{%(x) = O(k=>). Hence
dim H9(M, L¥) = O(k=*°). Since dim H9(M, L¥) is an integer,
dim HI(M, L¥) = 0 if k large.
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Applications of II.

Assume that D = M = M(n_).

(a) If g # n_. Then P,(f’)(x) < PI((Zk,NO (x) < k"=No, for every

No > 1. Thus P{%(x) = O(k=>). Hence

dim H9(M, L¥) = O(k=*°). Since dim H9(M, L¥) is an integer,
dim HI(M, L¥) = 0 if k large. We obtain
Kodaira-Andreotti-Grauert vanishing Theorem.
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Applications of II.

Assume that D = M = M(n_).
(a) If g # n_. Then P,(f’)(x) < p9 (x) < k"=No, for every

k,<k—No
No > 1. Thus P{%(x) = O(k=>). Hence
dim H9(M, L¥) = O(k=*°). Since dim H9(M, L¥) is an integer,
dim HI(M, L¥) = 0 if k large. We obtain
Kodaira-Andreotti-Grauert vanishing Theorem.
(b)If g =n_.
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Applications of II.

Assume that D = M = M(n_).
(a) If g # n_. Then P,(f’)(x) < p9 (x) < k"=No, for every

k,<k—No
No > 1. Thus P{%(x) = O(k=>). Hence
dim H9(M, L¥) = O(k=*°). Since dim H9(M, L¥) is an integer,
dim HI(M, L¥) = 0 if k large. We obtain
Kodaira-Andreotti-Grauert vanishing Theorem.
(b)If g = n_. By Hormander's L? estimates, Dg(q) has spectral
gap> Ck, C > 0 independent of k.
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Applications of II.

Assume that D = M = M(n_).
(a) If g # n_. Then P;Eq)(X) < pla) (x) < k"=No, for every

k,<k—No
No > 1. Thus P (x) O(k™°). Hence
dim H9(M, L¥) = O(k=*°). Since dim H9(M, L¥) is an integer,
dim HI(M, L¥) = 0 if k large. We obtain
Kodaira-Andreotti-Grauert vanishing Theorem.
(b)If g = n_. By Hormander's L? estimates, Dg(q) has spectral
gap> Ck, C > 0 independent of k. Thus, for k large,

(a) _ pla)
P = P g INo > 1.
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Applications of II.

Assume that D = M = M(n_).
(a) If g # n_. Then P;Eq)(X) < pla) (x) < k"=No, for every

k,<k—No
No > 1. Thus P (x) O(k™°). Hence
dim H9(M, L¥) = O(k=*°). Since dim H9(M, L¥) is an integer,
dim HI(M, L¥) = 0 if k large. We obtain
Kodaira-Andreotti-Grauert vanishing Theorem.
(b)If g = n_. By Hormander's L? estimates, Dg(q) has spectral
gap> Ck, C > 0 independent of k. Thus, for k large,

P( 9 Plgqik no» VNo > 1. Hence
(@), _ _ _
PE) = b0c K)o = PR () = B )|

< knr2m=No -y > 1.
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Applications of II.

Assume that D = M = M(n_).
(a) If g # n_. Then P;Eq)(X) < pla) (x) < k"=No, for every

k,<k—No
No > 1. Thus P (x) O(k™°). Hence
dim H9(M, L¥) = O(k=*°). Since dim H9(M, L¥) is an integer,
dim HI(M, L¥) = 0 if k large. We obtain
Kodaira-Andreotti-Grauert vanishing Theorem.
(b)If g = n_. By Hormander's L? estimates, Dg(q) has spectral
gap> Ck, C > 0 independent of k. Thus, for k large,

P( 9 Plgqik no» VNo > 1. Hence
(@) _ _ _
PE) = b0c K)o = PR () = B )|

< knr2m=No -y > 1.

We obtain Bergman kernel asymptotic expansions.
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By using our main result Il, we can establish Bergman kernel
asymptotic expansions for semi-positive line bundles and big line
bundles.
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By using our main result Il, we can establish Bergman kernel
asymptotic expansions for semi-positive line bundles and big line
bundles.

The proof of the main results base on semi-classical WKB method
for Kodaira Laplacian Diq). We refer the readers to the paper by
Hsiao-Marinescu: Asymptotics of spectral function of lower energy
forms and Bergman kernel of semi-positive and big line bundles,

Commun. Anal. Geom. 22 (2014), No. 1, 1-108.
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