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* Quantization (manifolds)
(£ ®d 2) Feynman quantization
H(z,p) € C=(T*5?)
a(t,x,y) : suitable symbol, S(¢,x,y) : phase function defined by H.

Ut)f(z) = [ at,z,y) exp{;S(t,z,y)} f(y) dy

S2
. t VIN _ —it 7
A UG = exp (54)
Problem 1. For H = %|p|2, what is H ?

Problem 2. What is the main difficulity ?
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Canonical quantization v.s. Feynman quantization

(Case 1) M = R"™, H(z,p) = %|p|2 + V(x) € C®(T*M)
\ Canonical quantization \ Feynman quantization

Classical mechanics

V(z) = O(|z|?)+error. | H = —"2A + V(x) lim [U(5)]Y
N —o0 o

= exp (%“H)

|

(Fujiwara theory)

V(z) = Clz| H=-"A1V() lim [U(L)IN
N —o00 o
(C>0,n=4) =exp<_T’tH>?

July 4, 2014 5 /30
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(Case 1) M = R"™, H(z,p) = %|p|2 + V(x) € C*°(T*M)

] Classical mechanics

\ Canonical quantization \ Feynman quantization

V(x) = O(|x|?)+error. = —h;A + V(x) lim [U(%)]N
N—o0 o
(Fujiwara theory) = €Xp (_TRH>
n & h i
V@ =Clal" | H=-5A1V@) | lim UGN
(C >0 n=4) :exp(%ﬁ)?

(Integral kernel) e_Titﬁf(a:) = [ K(t,z,y)f(y) dy.
Rn

’ Classical mechanics ‘ Orbits of CM ‘ integral kernel ‘
V(x) = O(|z|?)+error. time locally K(t,z,y)
global diffeo € C>=((0,t) x R?™)

on config. space

V(z) =C|z|"
(C>0n=4)

infinite many
small periodic curves

fn=1, K(t,x,y)
is nowhere C'1
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Canonical quantization v.s. Feynman quantization

(Case 2) M = S2, H(x,p) = %gst(p,p) = %gijpipj (on local charts)
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(Case 2) M = S2, H(x,p) = %gst(p,p) = %gijpipj (on local charts)

’ Classical mechanics \ geometric quantization \ Feynman quantization

geodesic flow prequantization exists A}im [U(%)]N
—> 00
(various speeds) real polalization fails! | =
a h2 1 —it h? R
H=-20-07 explF (-2 -8

(Integral kernel ) e_T“(_gA_BR)f(CB) = [ K(t,z,y)f(y) dy.
SZ

’ Classical Mechanics ‘ Orbit ‘ Integral kernel ‘
geodesic flow infinite many K(t,x,y)
(various speeds) small periodic curves | is distribution.
Here A = =2 (/Gg = 2 (scalar curvature).

VG 9z7
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Summary (Z£® 1)

- Various quantizations
(e.g. Geometric quantization, Feynman quantization,
Deformation quantization etc.).

* In the framework of geometric quantization, we can not
construct the real polarization of £|p|? on L?(S52).

* Quantized operators may differ depending on the definitions.

(Spectral geometry A + SR )

B =0 (well-known)

-3 =1/6 (geometry of spectrum clustering)
- Geometry of prequntization
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Summary (Z D 2)

In some cases, infinite many periodic curves exist
(even if time t fixed).

Integral kernels are singular
for super-quadratic potentials or spheres.

The kernel of e% is given by

—itE

K(tz,y) = e 7 uj(@)u;(y)
E;j

where {uj(x)} is eigenfunction expansion of —A and E; are
eigenvalues. The behavior of K (&, x,y) is quite singular.
Neverthless, when we sum a finite number of terms in E,
K¢inite(t, ,y) are smooth.

July 4, 2014



§2 Feynman path integrals (heuristics)

space .
P x Action integral

S(s,t, ,y)
(tx) = [[[3X(1)? = V(X(r))]dr

t

)f'() cllassmal path time
X (+) linear path
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space .
P x Action integral

S(s,t, ,y)
(tx) = [[[3X(1)? = V(X(r))]dr

R.Feynman proposed
the quantization is given by
Ja eﬁS(O,t,w,y)f(y)D[X]
—it 1
= e A f()

 is the path space

connecting (0,vy) and (¢, x).
(+) classical path titme D[X] is the Lebesgue-like
(+) linear path measure on 2

X
X
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(tx) = [[[3X(1)? = V(X(r))]dr

R.Feynman proposed
the quantization is given by
Ja eﬁS(O,t,w,y)f(y)D[X]
—it 1
= e A f()

 is the path space

connecting (0,vy) and (¢, x).
(+) classical path titme D[X] is the Lebesgue-like
(+) linear path measure on 2

X
X

Remark. ~ We can not construct Feynman path measure (Cameron)
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Time slicing approximations (An alternative method of F.P.I.)

The action S is integrals over

x piecewise classical paths

(t,)

(ts, x3)

0,y

(- ) pleceW|se cIaSS|caI path
(+) piecewise linear path

X
X
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The action S is integrals over
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By using the density of paths a
(Two different ways)
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Time slicing approximations (An alternative method of F.P.I.)

The action S is integrals over
: piecewise classical paths or
(t, z) piecewise linear paths (Fig.)
(Two different ways are proposed)

(ts, x3)

By using the density of paths a
(Two different ways)

Ju Q(tj’ tit1, Tj> Tjy1)

0,y en Sttt 125:@i41) f () da ;
: : : : =U(tj+1 — tj) f(zj41)
o _ - f f 7 (small time evolution op.)
X( ) piecewise classical path Time slicing approximations
X (- )APlecemse linear path are defined by
Jar o Jar 11 a(tjotin, @, m3+1)e"S(t”t”l’w”w’Jrl)f(y) H dx;
N—1 =0 i g J=0
=[II Ultj+1 — t)]f (@) = Jo erOP*Y f(y)D[X] (N — o).
7j=0
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Other different alternative definitions of Feynman path

integrals

Other alternative methods for path integrals.
1. Trotter Kato forumulas.
2. Analytic continuation of Wiener measure
by using complex Planch constant h, m or t

3. An improper integral on Hilbert spaces.
(K.lto, Albeverio )

4. Non-standard analysis (¥*measure of the Dirac operator

and take the limit ¢ — oo
etc.

July 4, 2014 11 /30
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integrals

Other alternative methods for path integrals.
1. Trotter Kato forumulas.
2. Analytic continuation of Wiener measure
by using complex Planch constant h, m or t

3. An improper integral on Hilbert spaces.
(K.lto, Albeverio )

4. Non-standard analysis (¥*measure of the Dirac operator

and take the limit ¢ — oo
etc.

Here, we employ the time slicing products.
to derive the curvature from action integrals.
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Known results (D. Fujiwara)

Assumption V(x) € C>*°(R™), |0*V ()| < Cq for |a| = 2.
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Assumption V(x) € C>*°(R™), |0*V ()| < Cq for |a| = 2.
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(The classical path connecting (0,y) and (&, x) is time locally unique. )
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Known results (D. Fujiwara)

Assumption V(x) € C>*°(R™), |0*V ()| < Cq for |a| = 2.
L S(t,2,y) = [g[3X(1)? = V(X()ldr
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2. D(t,z,y) = det(92S(t, z,y)/0xdy) (Van Vleck determinant)
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Known results (D. Fujiwara)

Assumption V(x) € C>*°(R™), |0*V ()| < Cq for |a| = 2.

L S(t,2,y) = [g[3X(1)? = V(X()ldr
(The classical path connecting (0,y) and (&, x) is time locally unique. )

2. D(t,z,y) = det(92S(t, z,y)/0xdy) (Van Vleck determinant)
a(t,x,y) = (2mwih)""/2D(t,x,y)"/>.

3. UM f(2) = [gn alt, z,y)enSEY) f(y)dy.

Theorem (Fujiwara)

Fort # 0, ' R
lim [U(%)]N = exp _T”[—%A 4+ V(z)] (Operator norm)
N—o0
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Known results (W.Ichinose)

Assumption V(xz) € C>*°(R"™), |0*V (z)| < Cq for |a| = 2.
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Known results (W.Ichinose)

Assumption V(xz) € C>*°(R"™), |0*V (z)| < Cq for |a| = 2.

L S(t,z,y) = [i[3X(1)? — V(X (7)))dr
(linear path connecting (0, y) and (¢, x).)
2. a(t,z,y) = (2wih)~"™/2.

3. U@ f() = [gn alt, z,y)enSEY) f(y)dy.

Theorem (W.Ichinose)

Fort # 0, _ )
A [U()]Y f (@) = exp FE-BA +V(@)]f(x) (L2-strong)
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Some remarks

1. Van Vleck determinant D(¢t, x, y) satisfies continuity equation.
2D+ V.[DVS]=0.
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1. Van Vleck determinant D(¢t, x, y) satisfies continuity equation.
2D+ V.[DVS]=0.

2. S(t,x,y) and a(t,x,y) are defined in two different ways .

3. In preceding results, U(t) is a global L? bounded operator.
(Cotlar Stein lemma, Calderon-Vaillancourt theorem,
Hadamard's global inverse function theorem)

Ve >0, I3T >0st. 0<t < T =
U@ Fllzz = (1 + CH)[ fllL2 - (1)
U@ f —exp S2H S|z < et||fllgz -+ (2)
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Some remarks

1. Van Vleck determinant D(¢t, x, y) satisfies continuity equation.
2D+ V.[DVS]=0.

2. S(t,x,y) and a(t,x,y) are defined in two different ways .

3. In preceding results, U(t) is a global L? bounded operator.
(Cotlar Stein lemma, Calderon-Vaillancourt theorem,
Hadamard's global inverse function theorem)

Ve >0, I3T >0st. 0<t < T =
U@ Fllzz = (1 + CH)[ fllL2 - (1)
U@ f —exp S2H S|z < et||fllgz -+ (2)

We consider the esitmates corresponding to (1) and (2) on the sphere.

Yoshihisa Miyanishi (The graduate school of Low energy approximations of the Feynman p July 4, 2014 14 / 30



63 Path integrals on the sphere (shortest paths and Low

energy approximations)

Setting .
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63 Path integrals on the sphere (shortest paths and Low

energy approximations)

Setting .

1. (M,g) = (52%,gst) (2-dim standard sphere in R3)
2. d =d(z,y) = arccos(Z - y) (geodesic distance)

(We don't consider d = r.)
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§3 Path integrals on the sphere

Setting.
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§3 Path integrals on the sphere

Setting.

t . . d(z,y)|?
3. 8(ty) = o 59u( (E(2), &(1)) di = 14500
(The action integral over the shortest path)
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§3 Path integrals on the sphere

Setting.

. . d(z,y)|2
3. 8(ty) = o 59u( (E(2), &(1)) di = 14500
(The action integral over the shortest path)

4. Van Vleck determinants on manifolds
D(t,z,y) = G~/2(x2)G~/2(y) det(8?S(t, z,y) /dxdy)

x(d(z,y)) : cut off
(bump ft. with compact support contained in d(z,y) < 7. )

a(t,z,y) = x(d(z,y))D(t, x, y)l/z
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§3 Path integrals on the sphere

Setting.

. . d(z,y)|?
3. S(ta :IC,’y) = f(f %gm(t)(x(t)ﬂw(t)) dt = %
(The action integral over the shortest path)

4. Van Vleck determinants on manifolds
D(t,z,y) = G~/2(x2)G~/2(y) det(8?S(t, z,y) /dxdy)

x(d(z,y)) : cut off
(bump ft. with compact support contained in d(z,y) < 7. )

a(t,z,y) = x(d(z,y))D(t, x, y)l/z

Definition (Shortest path approximations on S?)
U@t)f(z) = (2m1) 7! [g a(t,z,y)eS® ™ 9) f(y) dy

(Remark. For the simplicity, let h = 1.)
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§3 Path integrals on the sphere.

Setting
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§3 Path integrals on the sphere.

Setting
—Ag2 = [ Edp(E) : spectral resolution
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Setting
—Ag2 = [ Edp(E) : spectral resolution

Remark.

{uj, E;} : Eigenfunction expansion on S2.
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§3 Path integrals on the sphere.

Setting
—Ag2 = [ Edp(E) : spectral resolution

Remark.
{uj, E;} : Eigenfunction expansion on S2.
({u;} denotes C.0.B in L?(S?) , E; the eigenvalue)
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§3 Path integrals on the sphere.

Setting
—Ag2 = [ Edp(E) : spectral resolution

Remark.
{uj, E;} : Eigenfunction expansion on S2.
({u;} denotes C.0.B in L?(S?) , E; the eigenvalue)

p(E) : L2(S?) — L.h.{u; | E; £ E} : spectral projector
(Spectral projectors )

Yoshihisa Miyanishi (The graduate school of Low energy approximations of the Feynman p July 4, 2014 17 / 30



63 Path integrals on the sphere. (Results)
[Adv. Appl. Math. Anal. (to appear)]

Theorem (operator norm)
Fort # 0 and small e > 0,
lim [U(¢/N)INp(NY/3=2) = exp [ it (~3(& = &) | inL?
N—oc0
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[Adv. Appl. Math. Anal. (to appear)]

Theorem (operator norm)
Fort # 0 and small e > 0,
lim [U(¢/N)INp(NY/3=2) = exp [ it (~3(& = &) | inL?
N—oc0

Theorem (strong limits)

Fort # 0
s-lim [U(¢/N)]Np(N)f () = exp [—it (—3(& — &) | £(@) in L?
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§3 Path integrals on the sphere. (Results)
[Adv. Appl. Math. Anal. (to appear)]

Theorem (operator norm)
Fort # 0 and small e > 0,
lim [U(t/N)]Np(N/3-¢) = exp [— it <—%(A -
IN—o0

Theorem (strong limits)
Fort # 0
s-lim [U(t/N)]Np(N)F(x) = exp |—it (—3(& — &)

v
Corollary

Let uwj be an eigenfunction of Laplacian. Fort # 0,

s-lim [U(¢/N)]Vu; = exp [— it (—%(A g ) }uj in L?

A,
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63 Path integrals on the sphere (Results)

Remark 1.
Fort #£ 0,

Jim [[[U@E/N)Y —exp | =it (=3(A = ) [llz270,

(Time slicing products does not converge in operator norm
without spectral projector, )
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63 Path integrals on the sphere (Results)

Remark 1.
Fort #£ 0,

Jim [[[U@E/N)Y —exp | =it (=3(A = ) [llz270,

(Time slicing products does not converge in operator norm
without spectral projector, )

Remark 2.
f(x) € G1/6(S?) (Gevrey class). For t # 0,

s-lim [U(t/N)]N () = exp [ — it (—%(A — B )}f(x) in L2.

(The convergence for low energy functions)

High energy functions cannot be captured by shortest path
approximations.
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63 Path integrals on the sphere (Related results)

_Let _)f(a:) € C®°(S?) and t = S”Tm € Q (k and m are relatively
prime.
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63 Path integrals on the sphere (Related results)

!_et {(w) € C®°(S?) and t = &'Tm € Q (k and m are relatively
prime.

S-A}i_lffloo{U(Sﬂm/kN)}Np(N)f(w) x etit/12

= 52 X0 (231;1) e~ 4miImIUADF1}/3 )2 (cos d(a, y)) f (y)dy

= {ezmm/% Z_ I'(m,k,j) cos 2ZJA} f(x)

i=0
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63 Path integrals on the sphere (Related results)

!_et {(w) € C®°(S?) and t = &'Tm € Q (k and m are relatively
prime.

S—A}im {UB7m/EN)}Np(N) f(x) x et/12
—>0o0
= Js2 Xico (25;1) e M TN/ (cos d(w, ) F(y)dy

= {ezm’m/?’k Z_ I'(m,k, j) cos 2ZJA} f(x)

i=0

2k—1 )
where I'(m, k, j) = % S emimHi)/k s 3 Gaussian sum,
=0

A=,/-A47,

C; : Gegenbauer polynomials are defined by
1 _ = 01/2 tl
Gzmez — L O (@)
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§3.1 Outline of proof

We find

d(z,y)

D(t = =
&2 y) t?sind(z, y)

for0 <d< .
For x(d)K (t, x,y) = x(d)D(t,z,y)/2e*>, we obtain

<§t Fin,- 1};) () K (£, 2, 9))

_[ dz—sin2d+1 R Ll )]K(t )
~ X\ 8d2sin2d '8 12) " 2'7X Y

Ix (sind — dcosd

ad 2dsind
ox [id
() Ko,

) K(t,z,y)

t
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§3.1 Outline of proof

By using stationary phase methods and integral equations,
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§3.1 Outline of proof

By using stationary phase methods and integral equations,

For H = —%(Asz — %)
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§3.1 Outline of proof

By using stationary phase methods and integral equations,

For H = —%(Asz — %)

U@ flizz = A4 Cit) || fllez + Cot?[(=Lg2 + 1) fllgz -+ (3)
U@ f — exp(=itH) fllzz < G5N(=Ds2 + 1 fllz2 -+ (4)
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§3.1 Outline of proof

The binomical coefficients bounds < > ﬁ < % yields the following

k
estimates

{e™*" — Ux(t/N)"}f (@) 12
et — {7 N (1 4 B(t/N)IY] f (@)l

N o ~
<3 () e RN BN )Y £ @) 2

) (9)* (L) 1-a + 1% (@)l
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84 Path integrals for super quadratic potentials

(The shortest linear path and low energy approximations)

Setting(l-dim super quadratic potentials)
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84 Path integrals for super quadratic potentials

(The shortest linear path and low energy approximations)

Setting(l-dim super quadratic potentials)
1. H(z,p) = %|p|2 + clz|™ € C°(T*R), (c>0,n =4).
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84 Path integrals for super quadratic potentials

(The shortest linear path and low energy approximations)

Setting(l-dim super quadratic potentials)
1. H(z,p) = %|p|2 + clz|™ € C°(T*R), (c>0,n =4).
w . .

(t, )

0,y

X () Countably infinite piecewise classical paths
X (+) piecewise linear paths
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84 Path integrals for super quadratic potentials

(The shortest linear path and low energy approximations)

Setting(l-dim super quadratic potentials)
1. H(z,p) = %|p|2 + clz|™ € C°(T*R), (c>0,n =4).
w . .

(t, )

. Countably infinite many
© classicall paths

0,y

X () Countably infinite piecewise classical paths
X (+) piecewise linear paths
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§4 Path integrals for super quadratic potentials.

(The shortest linear path and low energy approximations)

Setting
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§4 Path integrals for super quadratic potentials.

(The shortest linear path and low energy approximations)

Setting

2. S(t,x,y) = [ L(X(s), X (s))ds

— y—=)? _ et (yrtloant?
- 2t n+1 y—x

(The action integral over the linear path)
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84 Path integrals for super quadratic potentials.

(The shortest linear path and low energy approximations)

Setting

2. S(t,x,y) = [ L(X(s), X (s))ds

— y—=)? _ et (yrtloant?
- 2t n+1 y—x

(The action integral over the linear path)

Lemma (one path condition)

Let Cy < 24/2 and t > 0. Then the classical motion satisfying
X (s)|t|?/("=2) < Cy for all 0 < s < t is one at most.

3. Van Vleck determinant
D(t,z,y) = 0°S(t, x,y)/0xdy
xe(x,y) = x (2 =D g, t2/(=2)g) . cut off
(bump ft. with compact support contained in |z| < C1, |y| < C1.)

a(t,z,y) = xt(z,y)D(t, z,y)'/?
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84 Path integrals for super quadratic potentials

(The shortest linear path and low energy approximations)

Setting

Definition (Shortest path approximations)
U(t)f(z) = (2mi) "2 [ a(t, @, y)e'St = V) f(y) dy

We consider the spectral resolutions
—%A + clz|™ = [z Edp(E) : spectral resolution

Notations of Zanelli's h-small caliculus

Definition (Low energy shortest path approximations)
U(t, E) = p(E)U(t)

(Projections onto low energy functions)
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84 Path integrals for super quadratic potentials (Results)

Theorem (Time slicing products and the strong limits)

Let En = o(N™/?"=2) and EN — 00 as N — co. We have
s;\}im [U@/N, EN)IN f(x) = e ®H f(x) in L2(R)
—ro0

Remark. If n = 2, x¢(x, y) = x(t2/ (=g, t2/(7=2)y)
gives the usual oscillatory integrals.
Moreover we need not p(E).

Remark. If we use the classical shortest paths
the improved estimates will be given.
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§7 Prospects

Shell game (not rigorous!).

For small ¢ > O,
j‘ﬂ eiS(O,t,w,:c)D[X]
l(l+1)
~ o oxp SO L,a) + )~ S T Y (@) 2
—I1<m<l1

S(0,t,z,x) =0 & L, trace DEEPEETE.
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§7 Prospects

Shell game (not rigorous!).

For small t > O,
fﬂ e’iS(O,t,w,w)D[X]
l(l+1)
~ 2mt exp (iS(0,t,z, ) + ’Rt) ~ l 02; ity )2,
Z1<m<l1
S(0,t,z,z) =0 & L, trace DEEZEFTE.
_aplt1)
Re[27r1,t fS2 exp (ZRt)dx] ~ Re Z =
1=0,1,---
—I<m<l
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§7 Prospects

Shell game (not rigorous!).

For small ¢ > O,
j‘ﬂ eiS(O,t,w,:c)D[X]
l(l+1)
~ 2mt exp (iS(0,t,x,x) + ’Rt) ~ 3 ST Y m () |2
1=0,1,.--
—1<m<l

S(0,t,z,x) =0 & L, trace DEEPEETE.

2 U( )

Re[ZTr'Lt fS2 exp (ZRt)d{E] ~ Re Z e—zt%
[=0,1,---
—1<m<l

t—>0&L, C(n) ) - E—vEHKETBLE,
JeeGE)dz =1+ S (20+1)

1=1,2,
=1+2¢(-1) + C(O)
= 1—|—2(12)—l—( 1y =1 (correct)
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§7 Some prospects

mE (—H&D 2 RITTLHRIEK, h-small) (not rigorous!).
For small t > 0,
fﬂ B%S(O’t’m’m)D[X]
~ 2mht exp(hS(O t,x,x) + tht) ~ Z e |uj(:v)|2

Jj=1,-

S(0,t,z,x) =0 & L, trace DIFEFED (t1 St < t2) H5TH.
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§7 Some prospects

fmE (—HRD 2 RITEZFRIK, h-small) (not rigorous!).
For small t > 0,
fn e%S(O,t,m,m)D[X]

~ 27rzht exp(hS(O t T, w) + tht) ~ Z e = |U.7($)|2
i=1,
S(0,t,z,x) =0 & L, trace DIFEFED (t1 St < t2) H5TH.

—i(tg—t1)E;

ih R ih
fM gmie ©XP ("3 )dx dt ~ ; 21: ‘z‘fje "
‘7: PR
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§7 Some prospects

fmE (—HRD 2 RITEZFRIK, h-small) (not rigorous!).
For small t > 0,
fn e%S(O,t,m,m)D[X]

~ 27rzht exp(hS(O t T, w) + tht) ~ Z € — |U.7($)|2
i=1,
S(0,t,z,x) =0 & L, trace DIFEFED (t1 St < t2) H5TH.

—i(tg—t1)E;

ihR ih
fM gmif ©XP (Y3")dw dt ~ ; 21: B° "
‘7: PR

’Y iy
~ Y hetS/hoaf 9
“Y:closed geodesic det(I P‘Y)
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§7 Some prospects

fmE (—HRD 2 RITEZFRIK, h-small) (not rigorous!).
For small t > 0,
fn e%S(O,t,m,m)D[X]

~ 27rzht exp(hS(O t T, w) + tht) ~ Z € — |UJ($)|2
i=1,
S(0,t,z,x) =0 & L, trace DIFEFED (t1 St < t2) H5TH.

—i(tg—t1)E;

ih R ih
fM gmie ©XP ("3 )dx dt ~ ; 21: ‘z‘fje "
‘7: PR

’Y iy
~ Y hetS/hoaf 9
“Y:closed geodesic det(I P‘Y)

(Low energy, time local) Gutzwiller trace formula can be found
in [Gu-St] (§11.5.3. p.301)
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Thank you for your attention.

Yoshihisa Miyanishi (The graduate school of Low energy approximations of the Feynman p July 4, 2014 30/ 30



