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Dynamical systems (discrete time)
Let X be a compact Riemannian manifold and f : X → X a
smooth map.

I If f is hyperbolic then trajectories are complicated and
unpredictable.

I Study instead the evolutions of densities under a linear
operator induced by f .

I The Perron-Frobenius transfer operator M∗f of f , or its relative
the Ruelle transfer operator Mf : ϕ 7→ ϕ ◦ f .

I Spectral description of transfer operators can be used to
obtain other specific properties of the dynamics: decay of time
correlation functions, central limit theorem, mixing etc.
(Ruelle, Bowen, Fried, Rugh and others).

I Spectral approach has in the last ten years been improved
through the construction of functional spaces adapted to the
dynamics (Blank, Gouzel, Keller, Liverani, Baladi, Tsujii and
others).



Spectral gap

What one would like: spectral gap of Mf : H → H, i.e. the moduli
of the largest and second largest eigenvalues (counting
multiplicities) are separated by a positive distance.

I Exponential mixing is equivalent to 1 being the only
eigenvalue on the unit circle.

The spectral study of the discrete spectrum of Mf (the Ruelle
resonances) can be treated as the quantum resonances in open
quantum systems.

Symplectic properties of the dynamics on T ∗X

→ spectral properties of Mf

→ long term behavior of the dynamics.



Semiclassical approach

For hyperbolic dynamics, the study of transfer operators is
naturally understood in the semiclassical framework. Ideas appear
in

I 2007 – Baladi, Tsujii.

I 2008 – Baladi, Tsujii.

Formalized in

I 2006 – Faure, Roy.

I 2008 – Faure, Roy, Sjöstrand.

Other studies have appeared afterwards (Arnoldi, Dyatlov, Faure,
Sjöstrand, Tsujii, Weich, Zworski and others).

I 2011 – Faure, Semiclassical origin of the spectral gap for
transfer operators of a partially expanding map, Nonlinearlity
24.



Semiclassical approach

Find function space H such that Mf : H → H has a spectral gap.
Note

I Mf : ϕ 7→ ϕ ◦ f is an FIO,

Mf ϕ(x) =
1

(2π)n

∫∫
e i(f (x)−y)ξϕ(y)dydξ.

The associated symplectic map is the lift of f −1,

F : (f (x), η) 7→ (x , tf ′(x)η). (1)

I Usual Sobolev space Hm = Op (〈ξ〉m)−1(L2).

So: construct a symbol am ∈ Sm appropriately adapted to the
symplectic map (1) and set Hm = Op (am)−1(L2). (Anisotropic
Sobolev space.) Study Mf : Hm → Hm.



Proving the existence of a spectral gap I
Set Am = Op (am).

I The commutative diagram

L2
Qm→ L2

↓ A−1
m 	 ↓ A−1

m

Hm Mf→ Hm

shows that Mf : Hm → Hm is unitarily equivalent to

Qm = AmMf A
−1
m : L2 → L2.

I Use Egorov’s theorem to show that Q∗mQm is a pseudo-
differential operator and calculate the principal symbol qm.

I Use the L2 continuity theorem to get Q∗mQm = Rε + Kε where
Kε is smoothing and

‖Rε‖L(L2) ≤ lim sup
|ξ|→∞

sup
x
|qm(x , ξ)|+ ε, ε > 0.



Proving the existence of a spectral gap II

Now,
Q∗mQm = A−1m M∗f A

2
mMf A

−1
m

so

qm(x , ξ) =
a2m ◦ F (x , ξ)

a2m(x , ξ)
.

Since am is strictly decreasing along trajectories of F we have
qm < 1 as |ξ| → ∞. Hence, Q∗mQm has essential spectral radius
< 1, and peripheral spectrum described by the compact operator
Kε.
Deduce the same representation for Qm using polar decomposition
and the spectral theorem. Use the unitary equivalence of
Qm : L2 → L2 and Mf : Hm → Hm to get the same for Mf .



The model

Let T2 = S1 × S1 where S1 = R/Z. Define a map f : T2 → T2 by

f :

(
x
s

)
7→
(

2x mod 1
s + τ(x) mod 1

)
,

where E (x) := 2x mod 1 is uniformly expanding,

min
x

dE (x)

dx
> 1,

and τ : S1 → R is C∞. Both E : S1 → S1 and f : T2 → T2 are
2 : 1 maps.

I Assume that f is partially captive. (τ cannot be
cohomologous to a constant.)



Semiclassical parameter introduced by Fourier
decomposition

I With f as above, define the Ruelle transfer operator
Mf : L2(T2)→ L2(T2) by

Mf ϕ(x , s) = ϕ(f (x , s)), ϕ ∈ L2(T2).

I Mf preserves the following decomposition in Fourier modes:

L2(T2) =
⊕
ν∈Z
Hν , Hν = {(x , s) 7→ ϕ(x)e2iπνs : ϕ ∈ L2(S1)}.

Note that for ψ(x , s) = ϕ(x)e2iπνs ∈ Hν , we have that

Mf ψ(x , s) = ϕ(E (x))e iντ(x)e2iπνs .

I Let Mν : L2(S1)→ L2(S2) denote the operator Mf restricted
to Hν (with identification of Hν with L2(S1)). Explicitly,

Mνϕ(x) = ϕ(E (x))e iντ(x).



Semiclassical parameter introduced by Fourier
decomposition

I With f as above, define the Ruelle transfer operator
Mf : L2(T2)→ L2(T2) by

Mf ϕ(x , s) = ϕ(f (x , s)), ϕ ∈ L2(T2).

I Mf preserves the following decomposition in Fourier modes:

L2(T2) =
⊕
ν∈Z
Hν , Hν = {(x , s) 7→ ϕ(x)e2iπνs : ϕ ∈ L2(S1)}.

Note that for ψ(x , s) = ϕ(x)e2iπνs ∈ Hν , we have that

Mf ψ(x , s) = ϕ(E (x))e iντ(x)e2iπνs .

I Let Mν : L2(S1)→ L2(S2) denote the operator Mf restricted
to Hν (with identification of Hν with L2(S1)). Explicitly,
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For fixed ν ∈ Z,

Mνϕ(x) = ϕ(E (x))e iντ(x)

is a Fourier integral operator associated to the canonical relation

F (y , η) = {(x ,E ′(x)η) : y = E (x)} ⊂ T ∗(S1).

When ν ∈ Z+ is considered as a semiclassical parameter h = 1/ν,

M±νϕ(x) = ϕ(E (x))e±iντ(x)

is a semiclassical Fourier integral operator associated to the
canonical relation

F (y , η) = {(x ,E ′(x)η ± τ ′0(x)) : y = E (x)} ⊂ T ∗(S1).

Since E : S1 → S1 is a 2 : 1 map, there are precisely 2 distinct
elements belonging to the set in the right-hand side. Hence the
map F : T ∗S1 → T ∗S1 is 2 valued.

I Partial captivity essentially means that almost all trajectories
escape toward infinity.
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Discrete spectrum

Recall minx E
′(x) = 2.

Theorem (Ruelle 1986, Faure 2011)

Let m < 0. For any ν ∈ Z, the operator

Mν : Hm(S1)→ Hm(S1)

is a bounded operator which can be written

Mν = Rν + Kν ,

where Kν is a compact operator, and

‖Rν‖Hm ≤ 2m → 0, m→ −∞.



Spectral gap in the semiclassical limit
Let r(Mν) be the spectral radius of the operator
Mν : Hm(S1)→ Hm(S1).

Theorem (Tsujii 2008, Faure 2011)

Assume that f is partially captive. Then r(Mν) does not depend
on m and in the semiclassical limit ν →∞,

r(Mν) ≤ 2−
1
2 + o(1).

More precisely, for any ρ > 2−1/2, there are positive constants m0

and ν0, such that for any m ≥ m0, ν ≥ ν0 and n ∈ N we have

‖Mn
ν ‖L(Hm

ν ) ≤ cρn,

where Hm
ν is the Sobolev space Hm(S1) equipped with the norm

‖ϕ‖2Hm
ν

=
∑
ξ∈2πZ

|(1 + (ξ/ν)2)mϕ̂(ξ)|2.
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