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1. Magnetic Schrodinger operators
1.1. Basic definitions and properties
Let d > 2,

A= (Al, Ce ey Ad) & L%C(Rd; Rd),

Vi e L . (RY, Vvi>o.

Then the quadratic form
ho [u] = /Rd (1iVu + Aul? + Vi [uf?) de > 0,

defined on C&°(RY), is closable in L2(RY). Let
H(A,V4) be the self-adjoint operator gener-
ated by the closure of h4. The operator

H(A, Vi) = (—iV — A)? + V.

iIs the Schrodinger operator with magnetic
potential A and electric potential V+. Note
that

H(0,Vy) = —A+ V.

If Ae Lt (R%RY), divA e L2 (RY), and

Vi € L2 (RY), then H(A,Vy) is essentially

self-adjoint on C(RY).



1.2. Diamagnetic inequality
Some notations:

Let H;, j = 1,2, be two (separable) Hilbert
spaces. Then L(Hq1,Ho) (resp., Sco(H1,Ho))
is the space of bounded (resp., compact) lin-
ear operators T : H1 — Ho, and Sp(H1,Ho),
p € [1,0), is the pth Schatten-von Neumann
class of operators T' € S (H1,Ho) for which

||l = (T (T*T)p/Q)l/p < oo

If H1 = Ho = H, then we will write £L(#H) and
Sp(H), p € [1,00]. Occasionally, we will drop
H in these notations.



Let T,Q € £(L?(M,du)) where M is a space
with measure u . We write T - Q if

[(Tw)(2)] < (Qlul)(z), wue€ L?(M,dy),

for almost every x € M.

Theorem 1. (Dodds-Fremlin-Pitt)
Let T < Q.

() IFQ € Soo(L2(M,dp)), then T € Soo(L2(M, dp)).
(i) If Q € So,(L2(M,du)) with n € N, then
T € Son(L*(M,dp)).

The second part of the theorem is false if we
replace 2n with n € N by p € [1,00) \ 2N.



Theorem 2. Let

Ae L2 (RERY), Vi e LE (RY), Vi > 0.
(1)

Then the diamagnetic inequality

< <
exp (—tH(A,V})) = exp(—t(—=A +V3)) = exp (tA)
holds true for each t > 0.

Idea of the proof. If A and V are regular, and
div A = 0, then the operator exp (—tH (A, V1))
with t > 0 admits an integral kernel

Kav, (x,y;t) =

/ ol fé A(w(s))-dw(s) ,— fg V-I-(w(s))dsdEo’X;t,y (w(s))

where Eg x-; y(w(s)) is the conditional Wiener
measure on set of paths

{we (0, R [w(0) =x, w(t) =y}
In particular, we have
IKav, (xy: )] <Koy, (%,¥:t) < Koolx,y:t)

for t > 0, (x,y) € R24,



Corollary 1. Assume (1). Then
(HA V) +E) VS (A4 Vi +EB)77 =

(-A+E) 7, E>0, v>0.

Proof: If Q = Q@* > 0, and £ > 0, v > 0, then

1 o0
—y —tQ_—tE,y—1
(Q+ E) I_(v)/o e 1Qo—tE—1 gy

Corollary 2. Assume (1). Let V_ > 0 be a
measurable function over R%. If the multi-

plier by V_ is A-bounded (resp., —A-form-
bounded) with relative bound a, then V_ is
H(A, V4 )-bounded (resp., H(A, V4 )-form-bounded)
with relative bound (resp., relative form-bound)

at most a.



Idea of the proof.:

(i) The H(A, V4 )-relative bound of V_ is equal
to

: ~1
Jim Vo (H(A, V) + B) 7

(ii) The H(A, V4 )-relative form-bound of V_
IS equal to
1/2

. ~1/2)2
Jim VAR, V) + B) 22



Theorem 3. Assume (1). Let the multiplier

by the measurable function V_ : R% — [0, c0)

be A-bounded (resp., —A-form-bounded) with
relative bound (resp., relative form bound)

smaller than one. Set V.=V, —V_. Then

the operator sum (resp., form sum)

H(A, V) :=H(A, VL) —V_ = (=iV - A2+ V
is self-adjoint in L2(R%). Moreover we have

exp (—tH(A,V)) = exp(—t(=A+V)), t>0.

Exercise: Prove that
info(H(A,V)) >info(—A + V),

inf O'ess(H(A, V)) > inf Uess(—A + V)a

where o(T) (resp., oess(1)) denotes the spec-
trum (resp., the essential spectrum) of the
operator T =T,



1.3. Magnetic field
Assume A € CLH(RY: R?Y). Let

d
j=1

We have
1<j<k<d
with
0A 0A;
Bj:=—" -2 jk=1,..,d
8£Uj 8$k
Then B = {Bj }j 1 is the magnetic field
generated by the rﬁagnetic potential A. Set
.0 .
I_IJ(A) = —Z?—Aj, ]:1,...,d,
J
so that

d
H(A,0) =Y M,;(A)2

1=1
We have

Bjr = —ilM;(A), My(A)], jk=1,....d.
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1.4. Gauge invariance

Assume that the magnetic potentials A7),
7 = 1,2, generate the same magnetic field,
ie. d(AM) — A(2)) = 0. Then there exists a
function @ : R? — R such that

AD — A = vyo

(since R s simply connected, all closed 1-
forms are exact). Hence,

e 1Pn;(AM)e® = n,;42)), j=1,...,4
and
e (AL V)ei® = H(A V),

i.e. the operator H(AM) V) and H(A®2) V)
are unitarily equivalent under the gauge trans-
form u — e*®u.

Remarks:. (i) Performing a gauge transform,
we can achieve that divA = 0.
(ii) The operators H(A,V) and H(—A,V) are
anti-unitarily equivalent under the complex
conjugation.
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1.5. Constant magnetic field
Let d > 2. Assume that B # 0 is constant
with respect to = € R%. Then we will call

HL L= H(A, O)
the Landau Hamiltonian. Set
2m =dimRan B, n:=dmKerB

so that d =2m+n. Let b1 > ...b, > 0 Dbe
such numbers that the non-zero eigenvalues
of B counted with multiplicities coincide with
+ib;, j=1,...,m. If n > 0 (resp., if n = 0),
then in R? there exist Cartesian coordinates
(z,y,w) with x € R™, y € R™, w € R" (resp.,
(z,y) with z € R™, y € R™), such that the
2-form B can be written as

m
B = Z bjdx; N\ dy;.
=1

12



Then the Landau Hamiltonian is

2 2
(2 20
j=1 8$] 2 8y]’ 2

—Z

if n = 0, the sum W|th respect ¢ should be
omitted.

8w£

If n = 0, then o(H;) consists of isolated
eigenvalues of infinite multiplicity, called Lan-
dau levels. If n > 0, then o(Hy) = [Ag, >0)
where

m
No= > b
j=1

is the lowest Landau level. Moreover, o(Hy)
is absolutely continuous (a.c.), and the higher
Landau levels are embedded spectral thresh-
olds. For simplicity, we will consider only the
casesd =2 (i.,e. m=1landn=0) and d =3
(ii,e. m=1and n=1).
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1.6. Spectrum of the 2D LLandau Hamiltonian

Assume d = 2 (i.e. m = 1 and n = 0). Set
b.:=b;1 > 0. Then the Landau Hamiltonian is

m= (i 3+ (5 -

Z_
ox oy 2
a*a+b
where
« o0 .
at = —2ie’—e P, z=ux+4 1y,
0z
IS the magnetic creation operator,
o0
a.= —2ie ¥—e¥, z=ux— 1y,
0z
IS the magnetic annihilation operator, and
_ b(z?+y?)
o(z,y) ‘= 2 :
We have

[a, a™] = 2b.

14



Therefore,

©@,

o(H) = | {Ag}

q=0
with

Ng :=b(q¢+1), gecZy:={0,1,2,...}.
Moreover,
Ker (HL — /\q) = (a*)qul’ a, q € Z_I_,

and

Kera = {u e L?(R?) |u = ge™ 7, % = O}
z

iIs the Fock-Bargmann-Segal space. Hence,
in particular,

dim KGI’(HL—/\Q) =00, q€Ly.

Let pg : L2(R?) — L?(R?), q € Z4, be the
orthogonal projection onto Ker (Hy, — Ay).

15



Then p; admits an integral kernel

K, p(z,y;2',y") =

Lo (2 (@ =22+ = 3)?)) x

exp { — (e — )2 + (v = )2 + 2iay/ — ya")] |

where (z,v), («/,y") € R2, and

tGR, QEZ_l_,

are the Laguerre polynomials.

In particular,

b
KQ,b(x7y; may) — Za (x7y> S RQ‘

16



1.7. Spectrum of the 3D LLandau Hamiltonian

Assume d =3 (i.,e. m=1and n=1). Then
the Landau Hamiltonian is

HL:(_ (i_l_by) _|_<_ia_bx>2_82,

Since d = 3, we can introduce the magnetic-
field vector B := curl A. If A = %(—y,x,O) as
above, then B = (0,0,b).

That is why, if x = (z,y,w) € R3, we will write
occasionally x = (x|, x,) where z| = (x,y) €
R2 are the variables on the plane perpendic-
ular to B, while z;, = w € R is the variable
along B.

17



Using L?(R3) = L?(R?) ® L?(R), we can write
HLZHJ_(X)[H‘I‘IJ_@HH
where H | is the 2D Landau Hamiltonian,
d2
_E,

and I,,1, are the respective identities.

H, =

Since o(H,) = [0,), and o(H,) is a.c., we
have

o(Hy) = | [Ag,00) = (Ao, 00) = [b,00),
q=0

o(Hy) is a.c., and Ay, ¢ > 1 are embedded
spectral thresholds.
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2. Pauli operators

2.1. Basic definitions
Let d = 2,3. Assume

A€ Cl(Rd;Rd)a B]k S LOO(Rd)a ]7k — 17 .- -7d7

V € L°(R%:R).

Introduce the Pauli matrices

(o1 . (o =i\ . (1 0
1=\10)°727\i 0 /)9 0 -1 )
We have

-~

Gj =365, Giop+ 650, =20, j k=123

19



Let I> be the identity in C2, and

2

d
=1

be the Pauli operator, self-adjoint in L2(R%; C2)

and essentially self-adjoint on CSO(IR{d;(CQ).

The operator M(A,V) is the quantum Hamil-
tonian of a non-relativistic quantum particle
of spin % subject to an electromagnetic po-

tential (A,V).

Similarly to H, the Pauli operator M is gauge
invariant. In contrast to H, there is no dia-
magnetic inequality for M.

More information on the Pauli operator in
arbitrary dimension could be found, e.g. in
I.Shigekawa, Spectral properties of a Schrodinger
operators with magnetic fields for a spin %

particle, J.Funct.Anal. 101 (1991), 255-285.
20



2.2. 2D Pauli operator
Let d =2. Set b .= Bi1>. Then

M(A,0) = H(A,0)I> — bos.
Let ¢ be a solution of the Poisson equation
Ap =b.
Then, up to a gauge transform, we have
A= (9% 9}
Oy Ox
and

m~— O a*a O
M(A’O):< o) m+>::< O aa*)’

where, as earlier,
o0 . 0

a.= —2ie P—e?, a* = —2ie’— e 7.
Z 0z

21



Therefore,

Ker M(A,0) =

{(ul,ug) - LQ(Rd,CQ) |uq € Ker a, upy € Ker a*},

and

2 /12 _, Og
Keraz{uEL(R )|u = ge 90,} O},
y

Oh
Kel’ CL* — {u & LQ(R2)|’LL = heSD, 8— O} .
VA

Note that we have again
[a,a™] = 20,

but b is no longer assumed to be constant.

22



Exercise: Calculate dimKer M(A,0) if:

(i) b e CP(R?);

(ii) b is periodic, i.e.

b(x) = > bpe™X  x € R
keZ?

with, say, {bg},cp2 € £1(Z2).

23



2.3. 3D magnetic Pauli operator
Let d = 3. Then we have

3
M(A,0) = H(A,0)I> — Z Bjo;.
J=1
Let us consider magnetic fields of constant
direction B = (0,0,b). Due to the closedness
of B, we have

b="0b(z,), =, = (z,y)c R

As above, let ¢ be a solution of

Ap(z)) =b(z).
Then we can choose

(e

Hence,

M~ 0O
where
M*E=(—iV-A)2+b=M 0, +1, &M,
2
M} :=m#, and M, = H, = —-%;.
24



3. Berezin-Toeplitz operators
3.1. Motivation: eigenvalue asymptotics for
the perturbed 2D Landau Hamiltonian
Let d =2, b = const. > 0O,
Ve L®(R%R), lim V(x)=0.
|x|—00
Then
VY2 H M € Suo(L2(R2)),
and
xo
O'ess(HL—I-V) — O‘ess(HL) — O‘(HL) — U {/\j} .
7=0

However, generically, the Landau levels are
accumulation points of ogisc(Hy, + V).

Assume V > 0. Then the discrete eigenvalues
of Hy +V (resp., of H; — V) may accumulate
to the Landau levels only from above (resp.,
only from below).

25



Notation: If Fj(V;A), j = 1,2, are two real
functionals of V, depending on A > 0, we

write
Fr(Vid) ~ Fa(Vi ), A0,
if for each € € (0,1) we have

Fo((L—e)V;A) 4+ 0:(1) <
Fi(V; Q) <

Fo((1+2)V;A) 4+ O:(1).

26



Let g € Z. Then we have

Tr 1(/\q—17Aq_)\)(HL — V) ~ Tr 1()\,00) (pqqu()7)
2

with A_{ = —oo, and

Tr 1(/\q+>‘7/\q—|—1)(HL _I_ V) ~ Tr 1()\,00)(qu1961>;
(3)
as A | 0.

Thus, the Berezin-Toeplitz operator pqVpq 1S
the effective Hamiltonian which governs the
eigenvalue asymptotics of the operators

Hp +V

near the Landau level Ay, g € Z ..

27



Steps of the proof of (2) - (3):

(i) The Birman-Schwinger principle implies

Tr 1(/\q+)‘7/\q-|—1)(HL —I— V) —
Tr 11 00)(=VY2(HL — A= N)TVI2) +0(2),
Tr 1(/\(]—17/\(_1_)\)([{[’ — V) —

Tr 1100y (VI2(HL = Ag +2)7TVH2) 4 0(1),
as A J 0.

28



(ii) We have
Tr (g o0y (EVY2(HL — A £ N)TVE2) ~
Trioeo) (VY 2pV2),  Xlo0,
since
+VI2(Hp, — Ay N)TIV2 =

ATV 2p V22 (Hp - AN T (I —p) VY2,

and the second term admits a uniform limit
as A J 0.

(iii) Finally, for X > 0,

Tr 1()\700)(‘/1/2]9(1‘/1/2) = Tr 1()\700) (pqqu),
since if T' € Seo(H1,H>), then

Tr 1()\,00)(T*T) = Tr l(A,oo)(TT*)ﬂ A > 0.

29



3.2. Basic properties of the Berezin-Toeplitz
operators

Fix ¢ € Zy. Let V € L®(R?). Then, evi-
dently,
||PqVPQ|| S HV”Loo(RQ)

Let now V € LY(R?). Then the explicit ex-
pression for the value of the integral kernel of
pg ONn the diagonal easily implies

b
1PgVpqll1 < %HVHLl(R?)-

Interpolating, we find that if r € [1,00), and
V € L"(R?), then pyVpg € Sr(L?(R?)), and

b
IpaVoally < IV g2y

Moreover, if

Vel (R?), lim V(x)=0,

x| —00

30



Proposition 1. Let V € L} _(R?;R) satisfy
iMoo V(X) = 0. Assume that V' is radially
symmetric, i.e. there exists v : [0,00) — R
such that V(x) = v(|x|), = € R2. Then the
eigenvalues of the operator psVpqs with do-
main pyL?(R?), counted with the multiplici-

ties, coincide with the set

%/OOOv((2t/B)1/2)Lq(t)e_ttkdt, ke€Zy.

Remark:. If f is, say, a bounded function of
exponential decay, then

(MF)(2) = /Ooof(t)tz_ldt, 2€C, Rez> 0,

is the Mellin transform of f.
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3.3. Unitary equivalence of Berezin-Toeplitz
operators and WDQOs with Weyl symbols

Let d > 1, s : R2¢ s C be an appropriate
symbol. Then Op¥%(s) denotes the pseudod-
ifferential operator (WDO) acting in L2(R%),
with Weyl symbol s, defined by

(Op*(s)u) (z) =

(2m)~ /Rd /]Rd i (x 2 - ﬁ) e =) Cy (o) dar' d.

32



et us recall some of the properties of Op¥(s):
(i) Assume that

I8 (moay =
sup sup |6§5’?S(a:,£)| < 0.
{o,8€Z% | |al,|B|<[4]+1} (z,8) R
Then Op¥(s) € L{L2(R?%)), and the Calderon-
Vaillancout-type estimates
1OP™ ()l < collsll-(g2dy

hold with a constant cg independent of s.
(ii) Let s1,s> be two symbols which satisfy

S> = 81 0 x

with a linear symplectomorphism . Then
there exists a unitary operator U = U () such
that

Op¥(s5) = U*Op“¥(s1)U.

The operator U(x), called the metaplectic
operator corresponding to s, is defined uniquely
up to a unimodular factor.
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Introduce the harmonic oscillator

d2
hi=—— 5+ 72,
self-adjoint in L2(R). We have
O
o(h) = |J{2¢+ 1},
q=0

dimKer(h—(2¢+1))=1, q€Zg.

Let mq be the orthogonal projection onto
Ker(h —(2¢+1)), ¢ € Zy. We have

Tq = (-, 90q>L2(R) Pq
where
Hq(a:)e_g‘;Q/2

(V721q)1/2°
Hy, being the Hermite polynomials. Let 2nW,
be the Wigner function associated with g,
i.e. the Weyl symbol of ;. For (z,£) € R?
and g € Z4, we have

W) =

L, being the Laguerre polynomials.

SOQ(x) L= S IR7 q < Z—|—7

Ly(2(22 4 £2))e(@+E),

34



For z € R? set

Vi(z1,z0) = V(=b"1/ 220, —b71/%zy).

Proposition 2. There exists a unitary oper-
ator Uy, : L?(R) @ L?(R) — L?(R?) such that
for any V€ L}(R?) 4+ L>®(R?) and q € Z4., we
have

Idea of the proof. Let s; be the symbol
(614 b22/2)% + (&2 — b21/2)?, (,8) € T'R?,

of the 2D Landau Hamiltonian, and so is the
symbol
b(£% + 27)

of the operator (bh) ® I. Then there exists a
linear symplectomorphism ¢, such that s, =
s1 0. T hen U, is the metaplectic operator

U(s).
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4. Spectral asymptotics for Berezin—Toeplitz
operators

Based on the articles:

[RW] G.D.Raikov, S.Warzel, Quasi-classical
versus non-classical spectral asymptotics for
magnetic Schrodinger operators with decreas-
ing electric potentials, Rev. Math. Phys. 14
(2002), 1051-1072,

and

[R1990] G.D.Raikov, Eigenvalue asymptotics
for the Schrodinger operator with homoge-
neous magnetic potential and decreasing elec-
tric potential. I. Behaviour near the essential
spectrum tips, Commun. P.D.E. 15 (1990),
407-434.
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4.1. Compactly supported symbols

Theorem 4. [RW] Let 0 < V € L*(R?),
suppV be compact, and V. > C > 0 on an
open non-empty subset of R2. Fix q € Zy.
Then

Trley o) (PgVPg) = poo(M) (1 +0(1)), A0,
(4)

where

Voo(A) := (In]IN XD In Al

37



T he proof of Theorem 4 is based on Proposi-
tion 1, and reduces finally to the asymptotics
of integrals of the form

L (e tikdt, R e (0 7
E/O Q( )6 ) E( 700)7 q € —+>

as k — oo.

Remarks: (i) Relation (4) is not semiclassi-
cal in the sense that the function ps (M) is
essentially different from

Vi) = o (@6 € B2 (V= o) (2,8 > A},

where | - | is the Lebesgue measure.

(i) Let {Ang},en D€ the non-increasing se-
quence of the positive eigenvalues of p,Vpq,
q € Z4. Then (4) is equivalent to

NAng=—-nlnn(l4+o0(1)), n— oco.
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In N. Filonov, A. Pushnitski, Spectral asymp-
totics of Pauli operators and orthogonal poly-
nomials in complex domains, Comm. Math.
Phys. 264 (2006), 759-772, it has been
shown that under additional assumptions,

N )\n)q —

bC(supp V)2>
2

—nlnn 4 (1—|— n(l 4+ o0(1))

as n — oo, C(K) being the logarithmic capac-
ity of a compact set K C R2.

Let us recall the definition of C(K). Let
M(K) denote the set of probability measures
on K. Then

C(K) := e~ L(K)

where

T(K) ;= inf In |z — _1d d :
(K) 00 ke lz —y|” du(z)du(y)

If K is simply connected, then C(K) is equal
to the conformal radius of K.
39



4.2. Symbols of exponential decay

Theorem 5. [RW] Let 0 <V € L®(R?) and

INV(x) = —pux[?7(1 4+ 0(1)), |z| = oo, (5)
with 3 € (0,00), p € (0,00). Fix q € Z4.
T hen

Tr1 o) (PgVpg) = ppp(M)(1+0(1)), ALO,
(6)

where

( b 1 .
2M1/5|In>\| /Bifo< B <1,

pp(N) 1= |n(1+12,,,/b)| N\ if 8 =1,
o (In[INADTHINAJif 1 < 8 < oo.
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The proof of Theorem 6 is based on Proposi-
tion 1 and the following corollary from Propo-
sition 2:

Corollary 3. Letqe Zy, V € ng(RQ). Then
the operator pqVpq is unitarily equivalent to
po(Lq(—A/2b)V)pg, Lq being the Laguerre poly-
nomials.

Thus, finally, the proof reduces to the asymp-
totics of integrals of the form

% 7 wa@eppy 2y than,

as k — oo. Here

wq(r) 1=

1 d d .23
I— T Hr )7 07 ’ Z ’
q( Qbrdrrdr) (e ¢(r) ), r€(0,00), g €2y

and ¢ € C*°([0, o0)) is a cut-off function, van-
iIshing near the origin, and identically equal to
one outside a bounded interval.
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Remarks: (i) If 0 < 8 < 1, relation (6) is
semiclassical, and if 8 > 1, it is not semi-
classical. If 3 = 1, then the order of (6) is
semiclassical, while the coefficient is not.

(ii) Relation (6) is equivalent to
[ —u(2n/b)’(1+0(1)), 0< B < 1,
NAng =14 —(n(1+2u/b))n(1+0(1)), =1,

—%nlnn, B> 1,

(7)

as n — oo. If we assume
NV (x) = —plx|*’ +0(n|x]), [x] — oo,

instead of (5), then we can improve (7) in
the following way:
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If B € (0,1), then there exist constants f;,
jeN, with f; = u(2/b)P, such that

IN )\n,q —

- > fjn(ﬁ_l)j+1+0(lnn), n — oo.
1<j<113

If =1, then

NAng=—(n(1+2u/b))+0(INn), n— oco.

If B € (1,00), then there exist constants g;,
J € N, such that

B—-1

nlnn-4

N )\n,q —_ —

(/3 —1-1In (u6(2/6)5)> o
8

> g n(%_l)j_l_l + O(lnn), n — oco.

1<j<g2y
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4.3. Symbols of power-like decay

Theorem 6. [R1990] Let 0 < V € CH(R?),
and

V(z) = vo(x/[x])|x|7"(1 4 0(1)),

VV(x)| = O(|x|~"71),

as |x| — oo, with p > 0, and 0 < vg € C(S1).
Fix q € Z4. Then

TI’ ]_ ()\,OO) (pqqu) —

V(M) (1 +0(1)) =9, p(M)(L+0(1)), ALO0,
(8)

where

b

Vpp(A) 1= >\_2/p47r

21 5
/o vo(cosé,sinh) /Pdp.
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The proof of Theorem 6 is based on Propo-
sition 1.

Evidently, relation (8) is semiclassical. It is
equivalent to

An,g =

b om p/2
(4—/0 vo(COs 6, sin 9)2/pd9> n~P/2(140(1)),
7

aS n — 0O0.
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4.4. Magnetic and metric perturbations

Up to now we discussed only electric per-
turbations of the 2D Landau Hamiltonian.
Decaying perturbations of the magnetic field
and of the metric are also of considerable in-
terest, and the spectral asymptotics for such
perturbations have been investigated by var-
lous authors.

Combined electric, magnetic and metric per-
turbation of power-like decay were consid-
ered V. Ivrii, Microlocal Analysis and Precise
Spectral Asymptotics, Springer Monographs
in Mathematics. Springer-Verlag, Berlin, 1998.
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Combined electric and magnetic perturbations
of compact support were studied in G. Rozen-
blum, G. Tashchiyan, On the spectral prop-
erties of the perturbed Landau Hamiltonian,
Comm. Partial Differential Equations 33 (2008),
1048—1081.

Results related to metric perturbations of power-
like and exponential decay, or of compact
support, can be found in T. Lungenstrass, G.
Raikov, Local spectral asymptotics for met-
ric perturbations of the Landau Hamiltonian,
Analysis & PDE 8 (2015), 1237-1262.

47



Let us mention here also two articles which
concern geometric perturbations of Hy:

A. Pushnitski, G. Rozenblum, Eigenvalue clus-
ters of the Landau Hamiltonian in the exte-
rior of a compact domain, Doc. Math. 12
(2007), 569-586.

The perturbed operator is the Landau Hamil-
tonian, but it acts in L2(2) and is equipped
with Dirichlet boundary conditions; here, 2 =
R2\ K with a suitable compact K C R2.

M. Persson, Eigenvalue asymptotics of the
even-dimensional exterior Landau-Neumann

Hamiltonian, Adv. Math. Phys. 2009, Art.
ID 873704, 15 pp.

The perturbed operator is the Landau Hamil-
tonian, but it acts in L2() and is equipped
with Neumann boundary conditions.
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4.5. Extensions to 2D Pauli operators

Let d = 2. Assume that, say, b is a periodic
magnetic field with non-zero mean value. Let

0<V e L®[R?), lim V(x)=0.

x| —00
Denote by p the orthogonal projection onto

Kera. Then, similarly to the Schrodinger
case, we have

Tr1_ oo _n)(M(A,=V)) ~Tric o) (pVe),

Tr 1(A,C)(M(A7 V)) ~ Tr 1()\,00)(@‘/@)7
as A | 0.

Thus, we arrive at the problem of investigat-
ing the eigenvalue asymptotics of the com-
pact Berezin-Toeplitz operator pVp.
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Results on the asymptotics as A | O of

Tr 1(—00,—)\)(M(A7 —V)), Tr 1()\,C)(M(A7 V),

for various b and V, are contained, for in-
stance, in:

A. Iwatsuka, H. Tamura, Asymptotic distribu-
tion of negative eigenvalues for two-dimensional
Pauli operators with nonconstant magnetic
fields, Ann. Inst. Fourier 48 (1998), 479—
515.

G.D.Raikov, Spectral asymptotics for the per-
turbed 2D Pauli operator with oscillating mag-
netic fields. 1. Non-zero mean value of the
magnetic field, Markov Processes and Re-
lated Fields 9 (2003), 775-794.
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5. Singularities of the spectral shift func-
tion at the Landau levels

Based on the articles:

[BPR] V.Bruneau, A.Pushnitski, G.D.Raikov,
Spectral shift function in strong magnetic fields,
Algebra i Analiz 16 (2004), 207-238; transla-
tion in St. Petersburg Math. J., 16 (2005),
181-209,

[FR] C.Fernandez, G.D.Raikov, On the sin-
gularities of the magnetic spectral shift func-
tion at the Landau levels, Ann. H. Poincaré
5 (2004), 381-403,

and

[R2006] G.D.Raikov, Spectral shift function
for magnetic Schrodinger operators, Mathe-
matical Physics of Quantum Mechanics, Lec-
ture Notes in Physics, 690 (2006), 451-465.

51



5.1. The spectral shift function (SSF)

Let d =3, b >0, B=(0,0,b), curlA = B.
Let Hp denote the 3D Landau Hamiltonian
H; = H(A,0). Assume

V e C(R3R), |V(x)] < Clay ) PL(z) P,
x=(x,,xz,), C€[0,00),p >2,p,>1. (9)
Set H := Hg+ V. Then
(H—4)"' = (Ho — i)~ € S1(L*(R%)),
and there exists a unique
¢ =¢( H, Ho) € LY (R; (1 + E*)™dE)
such that the Lifshits-Krein trace formula
Tr (f(H) = f(Ho)) = | &(B: H, Ho)f'(E)dE
holds for each f € C§°(R), and
§(E; H,Hg) =0
for each F € (—oco,info(H)).
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The function &(-; H,Hp) is called the spec-
tral shift function (SSF) for the operator pair
(H, Hp).

For almost every E > b = infoac(H), the
SSF &(FE; H,Hp) is proportional to the scat-
tering phase for the operator pair (H, Hyp), i.e.
Birman-Krein formula

det S(E; H, Hg) = e~ 2™&(EiHl,Ho)

holds true, S(F; H, Hy) being the scattering
matrix for the operator pair (H, Hp).

Moreover, for almost every E < b we have

¢(E; H,Ho) = —Tr1(_ g(H).
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Properties of the SSF ([BPR]):

e £(-; H,Hp) is bounded on every compact
subset of R\ (2bZ + b);

e £(-; H, Hp) is continuous on
R\ ((20Z4 +b) Uopp(H)) where opp(H) is
the set of the eigenvalues of H.
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5.2. Asymptotics of the SSF near N\q

Our goal is to describe the asymptotic be-
haviour of the SSF &(FE; H,Hg) as E — Nq,

q < Z_|_.
Let V satisfy (9). For z;, € R?, A > 0, set

Wiz, ) = /R V(z,z)|dz,

w w
Wa= ) = (Uit 112 ),

where

wll = /]R |V($J_,CU||)| C052 (\/Xa’;”)dw”,

w1 = w1 .=

/]R |V (x),x,)| COS (V Az, sin (VAz,)dz,,

wo = [ V(@ y,m)|sin (VAz)da,
We have
rankpgWpq = oo, rankpgWVWapq = oo, A > 0.
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Theorem 7. [FR] Let V satisfy

V(x)| < C{x)7", x €R3, p>3, C € [0,00).
(10)
Assume moreover that V. > 0 or V < 0. Fix
q € Zy. Then we have

g(Aq_)"H7HO) :O(l)a )‘\Lov
itV >0, and

€(/\q_>\' H7 HO) ~ —Tr 1(2\/X,OO) (qupCJ) , A \l/ 07
if V <0. Moreover,

1 PqVV\DPq
Ng+X\, H,Hg) ~ —Tr arctan | —=——= |, A ] O,
&( gt 0) - (: W) J

itV >0, and
1 PgVVapq
Ng+A, H,Hg) ~ ——Tr arctan | —~= |, A 10,
E(Ng+ 0) - ( Vo) l
if vV <0.
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5.3. Proof of Theorem 7

A. Pushnitski's representation of the SSF (A.
Pushnitski, A representation for the spectral
Shift function in the case of perturbations of
fixed sign, St. Petersburg Math. J. 9 (1998),
1181-1194):

Assume that V satisfies (9). Then the norm
limit

T(E) :=lim|V[Y/2(Ho — B —i8) "1 V|12
exists for every I € R\ (2bZ4 +b). Moreover,
T(FE) is compact, and

O<ImT(FE) € 5.
Assume in addition that £V > 0. Then for
E e R\ (2bZ+—|—b),
(B, H,Hp) =

dt
14+ ¢t2

£ [ Tri( ) (F(ReT(B)+1Im T(E)))
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Then we have
+¢(F; H, Hg) ~

dt
14 ¢2

= [ T ) (F(Re Ty (B)+HIM Ty(B)))
as E — Ng where, for E # /g,
Ty(E) :=
im VIY2(pg © (Hy+ Ay — B = i8) V[

If B = Ng— X with A > 0, then Ty(FE) =
T,(E)* > 0, and

¢(E,H,Hg) =0(1), XlO,
if V >0, while

—&(E; H, Ho) ~ Trl(q o) (Tg(Ag — X)) ~
Trig o) (VY2 (pg® O3) [VIH2) =

Tr 1(2\/X,oo) (PgWpq), A10,

itV <0, OA_ being the operator with constant
integral kernel 1/(2v/\).
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IfE=/\q—|—)\ with A | O, then
+¢(E; H, Hg) ~

dt
1442

1
—/ Tr 11 o) (FUM Ty (E))
™ JR ’
1
—Tr arctan (ImTy(E)) =
s
1
—Tr arctan ( V| (pq ® O;") |V|) =

T

1
ZTr arctan (p—qWAp q) ,

s 2V
O;\F being the operator with integral kernel
cos vV (z, —
V(@) — ] r,,x, € R.

2\ ’
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5.4. A generalized Levinson formula

Corollary 4. [R2006] Let V satisfy (10), and
V<0. FixqeZy. Then

limﬁ(/\Q‘l‘)\;H,HO) _ 1
MO0 E(Ng— A H,Hy) 2 cos%

it W admits a power-like decay with decay
rate p > 2, or

lim ENg+ A H, Hg) _ 1

MO E(Ag— N H,Hp) 2
it W decays exponentially or has a compact
support.

Remark: The classical Levinson formula re-
lates the number of the negative eigenvalues
of —A+V, and limg o {(E; —A +V,-A).
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5.5. Extensions to Pauli operators

Theorem 7 admits extensions to 3D Pauli
operators with non constant magnetic fields
(0,0,b), b = b(x) being, say, an appropri-
ate periodic magnetic field of non-zero mean
value. In this case the role of the Landau
levels is played by the origin.

The analogue of Theorem 7 for such Pauli
operators can be found in G. Raikov, Low
energy asymptotics of the spectral shift func-
tion for Pauli operators with nonconstant mag-
netic fields, Publ. Res. Inst. Math. Sci., 46
(2010), 645-670.

Related results for somewhat different mag-
netic fields of constant direction, and for neg-
ative energies (when the SSF is proportional
to the eigenvalue counting function) are con-
tained in A. Iwatsuka, H. Tamura, Asymp-
totic distribution of eigenvalues for Pauli op-
erators with nonconstant magnetic fields,
Duke Math. J. 93 (1998), 535-574.
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6. Resonances near the Landau levels
Based on the articles:

[BBR2007] J.-F.Bony, V.Bruneau, G.D.Raikov,
Resonances and spectral shift function near
the Landau levels, Ann. Inst. Fourier, 57
(2007), 629-671,

[BBR2014] J.-F. Bony, V. Bruneau, G. Raikov,
Counting function of characteristic values and
magnetic resonances, Commun. P.D.E. 39
(2014), 274-305,

and

[BBR_Kyoto] J.-F. Bony, V. Bruneau, G. Raikov,
Resonances and spectral shift function sin-
gularities for magnetic quantum Hamiltoni-
ans, In: Proceedings of the Conference Spec-
tral and Scattering Theory and Related Top-
ics, Kyoto, Japan, 2011, RIMS Kokyuroku
Bessatsu B45 (2014), 77-100.

We assume d = 3, and use the notations
Hgp, H as in the previous section.
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6.1. Embedded eigenvalues

Theorem 8. [BBR_Kyoto] Let
—1/2
VIY2HSY? € S0 (L2(R3)).

Assume that V' is axisymmetric, i.e. depends
only on |z | and x,.
(i) Let V satisfy

—2b < V(x) < —Clg(x), x€R3,

where C > 0, and K C R3 is an open non-
empty set. Then each interval (/\q,/\q_|_1),
q € Z4, contains at least one (embedded)
eigenvalue of H.
(ii) Let V satisfy

—2b < V(x) < =Clg(z ) (z) ",

X = (xLaxll) S R37

where C > 0, p, € (0,2), and K C R? s
an open non-empty set. Then each inter-
val (Aq; N\g+1), q € Z4, contains a sequence
of eigenvalues of H which converges to N, 1.

63



6.2. Meromorphic continuation of the resol-
vent of H and definition of resonances

For z€¢ C4 :={¢ € C|Im >0}, we have

(Ho — Z)_l — Z pq @ (Hy+ Ng — Z)_l :
q=0

Recall that the resolvent (H, — z)~! with z €
C4 admits the integral kernel
ei\/Z|x,|—:Jc|’|

_ NG , :Ul,,a:'(l cR, Im+/z>0.

Let M be the infinite-sheeted Riemann sur-
face of the family

{\/z — /\q}q€Z+7
and let
P M= C\ (20Z4 +b)

be the corresponding covering.
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For \o € C and € > 0 put
D(Xp,e) :={A € C[|A = Aol <&},

D(Xg,e)* i ={AeC|0O<|X—Xo| <&}

There exists an analytic bijection zg:

D(0,v2b)* 3 k> zq(k) € D; C M,
such that P(zq(k)) = Ag + k2.

For N > 0 denote by My the part of M

where Im /z — A¢g > —N for all g € Z. Then,
Uns>oMpy =M.
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Proposition 3. [BBR2007]
(i) For each N > 0 the operator-valued func-
tion

(Ho —z)~1 i e V@I L2(R3) — Ni@n [2(R3)

has an analytic extension from C4 to My.
(ii) Suppose that V satisfies

V(x)| < C(xy ) PLexp (—Nlzy|),

x=(x,xz) € R3, C¢ [0, c0), (11)

for any N > 0 and some p; > 0. Then for
each N > 0 the operator-valued function

(H —2)"t e V@I L2(R3) — N@) L2(R3),

has a meromorphic extension from C to My
whose poles and residue ranks do not depend
on N.
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We define the resonances of H as the poles
of the meromorphic extension of the resolvent
(H — 2)~1, and denote their set by Res(H).

For zg € Res(H) define its multiplicity by

1
mult (zg) := rank —,/(H— 2) " tdz,
gl

217

where ~ is an appropriate circle centered at
20-
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6.3. Resonance-free regions and regions with
infinitely many resonances

Theorem 9. [BBR2007)] Let 0 < sg < v2b
and q € Z4. Assume V satisfies (11) with
p| > 2, and is of definite sign J. Then for
any 6 > 0 there exists gg > 0 such that:

(i) Ho 4+ gV has no resonances in

1
{z = 2¢(k) |0 < |k| < 59, =JIMEk < 5|Re k|}
for any 0 < g < gp.
(ii) If
W(z) = [ IV(zi@)lda,

satisfies InW(z,) < —C{x,)?, then for any
0 < g < gg, the operator Hpo + gV has an
infinite number of resonances in

1
{z = 2¢(k) |0 < |k| < sg, —JIMmk > 5|Re k|}.
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The proof of Theorem (9) i based on the fol-
lowing

Proposition 4. Suppose that V satisfies (11)
with p, > 2. Then zg € M is a resonance of
H if and only if —1 is an eigenvalue of

Ty (20) :=sign V |V|Y/2(Hg — 20) 1|V |Y/2.
Moreover,

dets((H — 2)(Hg — 2)" 1) = deto (1 + Ti/(2)),

has an analytic continuation from C, to M
whose zeroes are the resonances of H. If zg is
a resonance, then there exists a holomorphic
function f(z), for z close to zg, such that

f(z0) # 0 and

deta (1 + Ty (2)) = (= — 20)*0)(2),
with 1(zg) = mult (zp).
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6.4. Asymptotics of the resonance counting
function

For g € Z4 and z € D(0,v2b) set

Ga2) = JVIY/?(pg @ 02 ) V|2

2J|V |12 j;] (pj®(Hn+25(j—Q)+22)_l) vtz

O, being the operator with integral kernel
1
_€Z|$II_ZC|,| , X, wlll - R.

2

Let I, be the orthogonal projection onto
Ker G4(0).
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Theorem 10. [BBR2014] Let V satisfy (11)
with p, > 2 and have a definite sign J = +1.
Let

W(xj_) — /]R |V($J_733||)|d33||7 T € RQ’

satisfy the assumptions of Theorem 4,5, or
6. Fix q € Z4, and assume that I — G, (0)Ny
is invertible, Then for O < rg < vV2b we have

3 mult (z4(k)) =

zq(k)eRes(H ) :r<|k|<rg

Tr 1(27“,00) (qupCI)(l _I_ 0(1))
asr | 0.
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6.5. Proof of Theorem 10

(i) Abstract results

Let D be a domain of C containing 0O, and let
H be a separable Hilbert space. Consider the
analytic function

G :D — Sco(H).

Let M(G) be the orthogonal projection onto
Ker G(0).

Assumptions:
C1: The operator G(0) is self-adjoint;
Co: The operator I — G'(0)MN(G) is invertible.

Let 2 C D\ {0}. Set

Za(Q) = {characteristic values of G on Q} —

G(2)

z

{z e Q|1 - is not invertible}.
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By Cq1, and Cs the set Z4(£2) is discrete. For
zo0 € Zc(2) denote

MUHZ(Z()) L=

i [ (-T2 (1-52) e

where ~ is an appropriate circle centered at
zg. Set

Na(€2) = > Mult(zp).
20€ 23 (2)
If 02 is regular, and Z5(Q2) N o2 = 0, then

Na(2) = indgo (I — Giz)) —

i o (1= (1-572) e
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Proposition 5. Assume C1 and Co. Suppose
that the origin is an accumulation point of
Za(D\ {0}). Then we have

Im 2g] = o(|20]), 20 € Z2¢(D\ {0}),
as zo — 0. If, moreover, £G(0) > 0O, then

+Re Z0 >0
for zog € Zo(D \ {0}) with |zg| small enough.
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For O <a<b<ooand 0 > 0 set

Cyp(a,b) ={x+iyeCla<z<b, |yl <Oz}.

Proposition 6. Assume C1 and C,. Suppose
moreover that

Tr 1) (G(0)) = ®()(1 +0(1)), 740,
with ®&(r) = Cr=7, or &(r) = C|Inr|?, or

d(r) = ClrLI|TrT|7~|' and some ~,C > 0. Then

we have

Ng(Cy(r, 1)) = d(r)(1 +0o(1)), 70,
for any 6 > 0.

75



(ii) Sketch of the proof of Theorem 10

e For ge N and k£ € D(0,v/2b)* we have

[+ T (k) = 1= T80

i.e. zq(k) € Res(H) if and only if ik is a
characteristic value of G;. Moreover,

mult (z4(k)) = Mult (ik).

e By Proposition 5 with G = G4, we have
{zq(k) € Res(H) |r < |k| < rg} =

{zq(k) € Res(H) | ik € Cy(r,r9)}+ O(1),
as r | O.

e Now the claim of Theorem 10 follows from
Proposition 6 with G = G4 since

Tr 1(T’OO)(QQ(O)) = Ir 1(27,700) (qupq>.
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7. High-energy behaviour of the spectral
Clusters for the 2D Landau Hamiltonian

Based on the articles:

[PRVB] A. Pushnitski, G. Raikov, C. Villegas-
Blas, Asymptotic density of eigenvalue clus-
ters for the perturbed Landau Hamiltonian,
Commun. Math. Phys. 320 (2013), 425 -
453,

and

[LR] T. Lungenstrass, G. Raikov, A trace
formula for long-range perturbations of the
LLandau Hamiltonian, Ann. H. Poincaré 15
(2014), 1523-1548.
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7.1. Shrinking of the spectral clusters
Let d = 2, Hg be the 2D Landau Hamilto-

nian in constant scalar magnetic field b > O.
Assume that V satisfies

VeCR%R), V(X)) <Cx)*,
X € RQ, C € [0, 00), (12)

with some p > 0.

Theorem 11. (i) [PRVB] Assume that V sat-
isfies (12) with p > 1. Then

_1 1
qEZ_|_

with a constant C7 > 0.
(ii) [LR] Assume that V satisfies (12) with

p€ (0,1). Then

_pP
2

_pP
QEZ_|_

with a constant C5 > 0.
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7.2 Asymptotic density of the spectral

clusters

(i) Short—range V

Assume that V satisfies (12) with p > 1. De-
fine the Radon transform of V,

Viw,s) := % /R (sw =+ twT)dt,

where
— 1 1
W = (Cd]_,(UQ) €S, W = (—UJQ,(,U]_), s € R.

Note that assumption (12) with p > 1 entails

V(w,s)| <C@l+|sPt™?, wesSl, sek

Theorem 12. [PRVB] Let V € C(R2;R) sat-
isfy (12) with p > 1. Then

Jim AT o(VG(H — Ag) =

%/Sl /R<p(\7(w,s))dsdw (13)

for each ¢ € C§°(R\ {0}).
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For [o, 5] C R\ {0} and q € Z set
uShot([a, 8]) :=
> dim Ker (H — )\),

/\q+a/\;1/2§A§/\q+5/\;1/2

u3e" (fo B1) = T a, b1

Then (13) is equivalent to

im Ay Y2ushot ([, B]) = 13Ot ([a, B1),

q— 00

for any «, 3, such that a8 > 0 and
pShOt ({a}) = pShomt({B}) = o.
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(ii) Long—range V

Let x € R. We'll write:

o u € SF(R?) if u € C°(R?) satisfies

ID%(z)| < Calz)" 1Y, o ez?;

o u € HE(R2) if uc C®(R2\ {0}) is homo-
geneous of order k.

Assume that V € H* (R?) with p € (0,1), and
define its mean—value transform

- 1
V(z) := g/sl V(z — w)dw, =z € R>.

Since p € (0,1), we have ¥V € C(R?).

Moreover, sup g2 |2]|?|V(z)| < oco.
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Theorem 13. Let V € S; "(R?) with p € (0,1).
Assume that there exists V € H* p(IR{Q) such
that

V(x) - V(x)| < Clx|7P75, x €R?, x| > 1,

with some constant C and € > Q. Then

im AT (A2 (H - Ay)) =

g—oo 4

1 .
5t Jr2 o (bPV (x))dx (14)

for each ¢ € C§°(R\ {0}).
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For [o, 5] C R\ {0} and q € Z set
py "9 ([, B]) 1=

> dim Ker (H — ),
AgFalg PP <A< +BA; P

pI29 (e, 1) = [ (6P, b8

b

Then (14) is equivalent to

im Ay g9 (e, B1) = u2([o, BD),

q— 00

for any «, 3, such that a8 > 0 and
u29({a}) = pM9({B}) = 0.
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7.3. Semiclassical interpretation

For (x,£) € T*R?2, consider the Hamiltonian
function
1 2 1 2

HE) = (&4 502) + (62— 50m)
The projections of the orbits of the Hamilto-
nian flow of H onto the configuration space
are circles of radius \/E/b; here EE > 0O is the
energy corresponding to the orbit. The clas-
sical particles move around these circles with
period T, = w/b. The orbits can be param-
eterized by the energy E > 0 and the center
c € R? of the circle. Let ~(c, E,t), t € [0,T}),
be the path in the configuration space corre-
sponding to such an orbit. Set

Av(V)(c, FE) := Tib/OTb V(v(c, E,t))dt.
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Then, under the hypotheses of Theorem 12
we have

%/Slfﬂ%go(V(w,s))dsdw =

b .
— Iim

1
2T E%w\/—E/IRQ
and the combination of (13) and (15) implies

o(VEAV(V)(c, E))de, (15)

_ 1
qll_Dgo—/\qT"SO(\/Kq(H —Ng)) =
b .
— lim

2 E—o0 \/LE /Rz p(VEAV(V)(c, E))de. (16)
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Similarly, under the hypotheses of Theorem
13 we have
1

b Jr2 @(bpv(fﬁ))dfl? —

— lim = RQ(p(Ep/Q Av(V)(c, E))de. (17)
and the combination of (14) and (17) implies

oL p/2 _
Jimn, AT p(NY“(H — Ng)) =

b 1
— lim = p/2
21 Elinoo FE JRr2 SO(E AV(V) (Cv E)) de. (18)
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Relations (16) and (18) could be interpreted
in the spirit of the averaging principle for sys-
tems close to integrable ones (see e.g. Sec-
tion 52 in V. I. Arnold, Mathematical Meth-
ods of Classical Mechanics, Graduate Texts
in Mathematics, 60 1989).

According to this principle, a good approxi-
mation is obtained if one replaces the original
perturbation by its average along the orbits
of the free dynamics.
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7.4. Proof of Theorem 11

We recall that Theorem 11 concerns the shrink-
ing of the eigenvalue clusters of H to the Lan-
dau levels Ay.

First, we describe a suitable approximation of
Op¥(Vy*W,). Forr >0 and ¢ € S(R?) define
the distribution

1 2m
or(p) 1= —/ p(rcosf,rsinf)deb.
27 J0
Proposition 7. [PRVB, LR] Assume thatV &
S;P(R?) with p> 0. Then
1OP" (Vp + Wq) — Op (V%6 smegp)ll2 =
O(ng>™) (19)

as q — oo.
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Estimate (19) could be interpreted as equidis-
tribution of the eigenfunctions of the har-
monic oscillator h, i.e. as a weak convergence
as g — oo of the Wigner function 27W, asso-
ciated with the gth normalized eigenfunction
of h, to the measure invariant with respect
to the classical flow.

The key ingredient of the proof of Theprem
11 is:

Proposition 8. [PRVB, LR] Assume thatV €
S{P(R?) with p > 0. Then

O(k=r) if pe(0,1),
|OP"(Vy*6p)ll =4 O(~tink) if p=1,
ok—1) if p>1,

as k — oc.

The proof is based on estimates of Calderon—
Vaillancourt type for the norms of Weyl WDOs.
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Applying Proposition 8 above, Proposition 2
on the unitary equivalence of p,V P; and
Op"(Vy * Wq), and Proposition 7 concerning
the approximation of Op%(VxW,) by Op™ (Vyx*
5m), we obtain the following:

Proposition 9. Assume that V satisfies (12)
with p > 0. Then

OA""?) if pe(0,1),
lpgVrgll =3 O(A Y% InAy) if p=1,
ONg 7)) if p>1,

(20)
as q — oo.

Theorem 11 now follows from Proposition 9,
and the Birman—Schwinger principle.
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7.5. Proof of Theorem 12

Let us recall that Theorem 12 concerns the
asymptotic density of the eigenvalue clusters
of H in the case of short—range V.

Although the reduction is highly non trivial,
Theorem 12 follows from the Stone—\Weierstrass
theorem and the following:

Proposition 10. [PRVB] Assume that V sat-
isfies (12) with p > 1. Then

lim ASTD 2 Tr(pgv Pyt =

q— 0o

bt _
—/ / V(w,s)g ds dw
27 JS1 JR

for every integer £ > 1/(p — 1).
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The key ingredient of the proof of Proposi-
tion 10 is:

Proposition 11. [PRVB] Let V € C&(R?).
Then for each ¢ € N we have

im AY 2T 0P (V%8 megy)! =

q—00
1 Y ‘
—/ / V(w,s)" dsdw.
27 JS1 JR

The proof is mainly based on the stationary
phase method.
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7.6. Proof of Theorem 13

Let us recall that Theorem 13 concerns the
asymptotic density of the eigenvalue clusters
of H in the case of long—range V.

The Dynkin-Helffer—=Sjostrand formula, suit-
able estimates in Schatten—von Neumann classes,
and the Schur—Feshbach formula imply:

Proposition 12. Under the hypotheses of T he-
orem 13 we have

p/2 _ p/2
Tr SO(Aq (H—=Ng)) =TTr SO(Aq pqVpq) +0(Ng)

as q — oo.
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Theorem 13 now follows from Proposition 12
and the following:

Proposition 13. [LR] Under the hypotheses
of Theorem 13 we have

2
Tr (A 2pgVpg) =
2
Tr (G2 D" (Vy % 8, ) +0(Ag)  (21)
as q — oo, and
: _ 2
lim Ag T (NG 0P (V) 4 8 ) =

1

5 Jr2 o(bPV (x))dz. (22)
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The proof of (21) employs suitable estimates
in Schatten—von Neumann classes.

The proof of (22) is of semiclassical nature
since /\Z/QOpw(Vb*ém) is unitarily equiv-
alent to the WDO with Weyl symbol

sp(z, &) ‘= b"Vi(z,hE), (x,8) € TR,
with

However since this symbol is not smooth, a
suitable approximation by smooth symbols is
used at first, and then standard semiclassical
techniques are applied.
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