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1. Magnetic Schrödinger operators
1.1. Basic definitions and properties
Let d ≥ 2,

A = (A1, . . . , Ad) ∈ L2
loc(Rd;Rd),

V+ ∈ L1
loc(Rd), V+ ≥ 0.

Then the quadratic form

h+[u] :=
∫
Rd

(
|i∇u+Au|2 + V+|u|2

)
dx ≥ 0,

defined on C∞0 (Rd), is closable in L2(Rd). Let
H(A, V+) be the self-adjoint operator gener-
ated by the closure of h+. The operator

H(A, V+) = (−i∇−A)2 + V+

is the Schrödinger operator with magnetic
potential A and electric potential V+. Note
that

H(0, V+) = −∆ + V+.

If A ∈ L4
loc(Rd;Rd), divA ∈ L2

loc(Rd), and

V+ ∈ L2
loc(Rd), then H(A, V+) is essentially

self-adjoint on C∞0 (Rd).
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1.2. Diamagnetic inequality

Some notations:

Let Hj, j = 1,2, be two (separable) Hilbert

spaces. Then L(H1,H2) (resp., S∞(H1,H2))

is the space of bounded (resp., compact) lin-

ear operators T : H1 → H2, and Sp(H1,H2),

p ∈ [1,∞), is the pth Schatten-von Neumann

class of operators T ∈ S∞(H1,H2) for which

‖T‖p :=
(
Tr (T ∗T )p/2

)1/p
<∞.

If H1 = H2 = H, then we will write L(H) and

Sp(H), p ∈ [1,∞]. Occasionally, we will drop

H in these notations.
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Let T,Q ∈ L(L2(M,dµ)) where M is a space

with measure µ . We write T
≤. Q if

|(Tu)(x)| ≤ (Q|u|)(x), u ∈ L2(M,dµ),

for almost every x ∈M .

Theorem 1. (Dodds-Fremlin-Pitt)

Let T
≤. Q.

(i) If Q ∈ S∞(L2(M,dµ)), then T ∈ S∞(L2(M,dµ)).

(ii) If Q ∈ S2n(L2(M,dµ)) with n ∈ N, then

T ∈ S2n(L2(M,dµ)).

The second part of the theorem is false if we

replace 2n with n ∈ N by p ∈ [1,∞) \ 2N.
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Theorem 2. Let

A ∈ L2
loc(Rd;Rd), V+ ∈ L1

loc(Rd), V+ ≥ 0.
(1)

Then the diamagnetic inequality

exp (−tH(A, V+))
≤. exp (−t(−∆ + V+))

≤. exp (t∆)

holds true for each t ≥ 0.

Idea of the proof: If A and V are regular, and
div A = 0, then the operator exp (−tH(A, V+))
with t > 0 admits an integral kernel

KA,V+
(x,y; t) =∫

e−i
∫ t

0A(ω(s))·dω(s)e−
∫ t

0 V+(ω(s))dsdE0,x;t,y(ω(s))

where E0,x;t,y(ω(s)) is the conditional Wiener
measure on set of paths{

ω ∈ C([0, t];Rd) |ω(0) = x, ω(t) = y
}
.

In particular, we have

|KA,V+
(x,y; t)| ≤ K0,V+

(x,y; t) ≤ K0,0(x,y; t)

for t > 0, (x,y) ∈ R2d.

6



Corollary 1. Assume (1). Then

(H(A, V+) + E)−γ ≤. (−∆ + V+ + E)−γ ≤.

(−∆ + E)−γ, E > 0, γ > 0.

Proof: If Q = Q∗ ≥ 0, and E > 0, γ > 0, then

(Q+ E)−γ =
1

Γ(γ)

∫ ∞
0

e−tQe−tEtγ−1 dt.

Corollary 2. Assume (1). Let V− ≥ 0 be a

measurable function over Rd. If the multi-

plier by V− is ∆-bounded (resp., −∆-form-

bounded) with relative bound a, then V− is

H(A, V+)-bounded (resp., H(A, V+)-form-bounded)

with relative bound (resp., relative form-bound)

at most a.
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Idea of the proof:

(i) The H(A, V+)-relative bound of V− is equal

to

lim
E→∞

‖V−(H(A, V+) + E)−1‖.

(ii) The H(A, V+)-relative form-bound of V−
is equal to

lim
E→∞

‖V 1/2
− (H(A, V+) + E)−1/2‖2.
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Theorem 3. Assume (1). Let the multiplier

by the measurable function V− : Rd → [0,∞)

be ∆-bounded (resp., −∆-form-bounded) with

relative bound (resp., relative form bound)

smaller than one. Set V = V+ − V−. Then

the operator sum (resp., form sum)

H(A, V ) := H(A, V+)− V− = (−i∇−A)2 + V

is self-adjoint in L2(Rd). Moreover we have

exp (−tH(A, V ))
≤. exp (−t(−∆ + V )), t ≥ 0.

Exercise: Prove that

inf σ(H(A, V )) ≥ inf σ(−∆ + V ),

inf σess(H(A, V )) ≥ inf σess(−∆ + V ),

where σ(T ) (resp., σess(T )) denotes the spec-

trum (resp., the essential spectrum) of the

operator T = T ∗.
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1.3. Magnetic field
Assume A ∈ C1(Rd;Rd). Let

A :=
d∑

j=1

Ajdxj, B := dA.

We have

B =
∑

1≤j<k≤d
Bjk dxj ∧ dxk

with

Bjk :=
∂Ak
∂xj
−
∂Aj

∂xk
, j, k = 1, . . . , d.

Then B :=
{
Bjk

}d
j,k=1

is the magnetic field

generated by the magnetic potential A. Set

Πj(A) := −i
∂

∂xj
−Aj, j = 1, . . . , d,

so that

H(A,0) =
d∑

j=1

Πj(A)2.

We have

Bjk = −i[Πj(A),Πk(A)], j, k = 1, . . . , d.
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1.4. Gauge invariance
Assume that the magnetic potentials A(j),
j = 1,2, generate the same magnetic field,
i.e. d (A(1) −A(2)) = 0. Then there exists a
function Φ : Rd → R such that

A(1) −A(2) = ∇Φ

(since Rd is simply connected, all closed 1-
forms are exact). Hence,

e−iΦΠj(A
(1))eiΦ = Πj(A

(2)), j = 1, . . . , d,

and

e−iΦH(A(1), V )eiΦ = H(A(2), V ),

i.e. the operator H(A(1), V ) and H(A(2), V )
are unitarily equivalent under the gauge trans-
form u 7→ eiΦu.

Remarks: (i) Performing a gauge transform,
we can achieve that divA = 0.

(ii) The operators H(A, V ) and H(−A, V ) are
anti-unitarily equivalent under the complex
conjugation.
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1.5. Constant magnetic field

Let d ≥ 2. Assume that B 6= 0 is constant

with respect to x ∈ Rd. Then we will call

HL := H(A,0)

the Landau Hamiltonian. Set

2m := dim RanB, n := dim KerB

so that d = 2m + n. Let b1 ≥ . . . bm > 0 be

such numbers that the non-zero eigenvalues

of B counted with multiplicities coincide with

±ibj, j = 1, . . . ,m. If n > 0 (resp., if n = 0),

then in Rd there exist Cartesian coordinates

(x, y, w) with x ∈ Rm, y ∈ Rm, w ∈ Rn (resp.,

(x, y) with x ∈ Rm, y ∈ Rm), such that the

2-form B can be written as

B =
m∑
j=1

bj dxj ∧ dyj.
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Then the Landau Hamiltonian is

m∑
j=1

(−i ∂
∂xj

+
bjyj

2

)2

+

(
−i

∂

∂yj
−
bjxj

2

)2


−
n∑
`=1

∂2

∂w2
`

;

if n = 0, the sum with respect ` should be
omitted.

If n = 0, then σ(HL) consists of isolated
eigenvalues of infinite multiplicity, called Lan-
dau levels. If n > 0, then σ(HL) = [Λ0,∞)
where

Λ0 =
m∑
j=1

bj

is the lowest Landau level. Moreover, σ(HL)
is absolutely continuous (a.c.), and the higher
Landau levels are embedded spectral thresh-
olds. For simplicity, we will consider only the
cases d = 2 (i.e. m = 1 and n = 0) and d = 3
(i.e. m = 1 and n = 1).
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1.6. Spectrum of the 2D Landau Hamiltonian

Assume d = 2 (i.e. m = 1 and n = 0). Set

b := b1 > 0. Then the Landau Hamiltonian is

HL =
(
−i

∂

∂x
+
by

2

)2
+

(
−i

∂

∂y
−
bx

2

)2

=

a∗a+ b

where

a∗ := −2ieϕ
∂

∂z
e−ϕ, z = x+ iy,

is the magnetic creation operator,

a := −2ie−ϕ
∂

∂z
eϕ, z = x− iy,

is the magnetic annihilation operator, and

ϕ(x, y) :=
b(x2 + y2)

4
.

We have

[a, a∗] = 2b.
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Therefore,

σ(HL) =
∞⋃
q=0

{Λq}

with

Λq := b(2q + 1), q ∈ Z+ := {0,1,2, . . .} .

Moreover,

Ker (HL − Λq) = (a∗)qKer a, q ∈ Z+,

and

Ker a =
{
u ∈ L2(R2) |u = ge−ϕ,

∂g

∂z
= 0

}
is the Fock-Bargmann-Segal space. Hence,

in particular,

dim Ker (HL − Λq) =∞, q ∈ Z+.

Let pq : L2(R2) → L2(R2), q ∈ Z+, be the

orthogonal projection onto Ker (HL − Λq).
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Then pq admits an integral kernel

Kq,b(x, y;x′, y′) =

b

2π
Lq

(
b

2

(
(x− x′)2 + (y − y′)2

))
×

exp
{
−
b

4
[(x− x′)2 + (y − y′)2 + 2i(xy′ − yx′)]

}
where (x, y), (x′, y′) ∈ R2, and

Lq(t) :=

1

q!
et
dq

dtq

(
tqe−t

)
=

q∑
j=0

(q
j

)1

j!
(−1)jtj,

t ∈ R, q ∈ Z+,

are the Laguerre polynomials.

In particular,

Kq,b(x, y;x, y) =
b

2π
, (x, y) ∈ R2.
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1.7. Spectrum of the 3D Landau Hamiltonian

Assume d = 3 (i.e. m = 1 and n = 1). Then

the Landau Hamiltonian is

HL =
(
−i

∂

∂x
+
by

2

)2
+

(
−i

∂

∂y
−
bx

2

)2

−
∂2

∂w2
.

Since d = 3, we can introduce the magnetic-

field vector B := curlA. If A = b
2(−y, x,0) as

above, then B = (0,0, b).

That is why, if x = (x, y, w) ∈ R3, we will write

occasionally x = (x⊥, xq) where x⊥ = (x, y) ∈
R2 are the variables on the plane perpendic-

ular to B, while xq = w ∈ R is the variable

along B.
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Using L2(R3) = L2(R2)⊗L2(R), we can write

HL = H⊥ ⊗ Iq + I⊥ ⊗Hq

where H⊥ is the 2D Landau Hamiltonian,

Hq := −
d2

dx2
q
,

and I⊥, Iq are the respective identities.

Since σ(Hq) = [0,∞), and σ(Hq) is a.c., we

have

σ(HL) =
∞⋃
q=0

[Λq,∞) = [Λ0,∞) = [b,∞),

σ(HL) is a.c., and Λq, q ≥ 1 are embedded

spectral thresholds.
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2. Pauli operators

2.1. Basic definitions

Let d = 2,3. Assume

A ∈ C1(Rd;Rd), Bjk ∈ L∞(Rd), j, k = 1, . . . , d,

V ∈ L∞(Rd;R).

Introduce the Pauli matrices

σ̂1 =

(
0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
.

We have

σ̂j = σ̂∗j , σ̂jσ̂k + σ̂kσ̂j = 2δjk, j, k = 1,2,3.
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Let I2 be the identity in C2, and

M(A, V ) :=

 d∑
j=1

σ̂jΠj(A)

2

+ V I2

be the Pauli operator, self-adjoint in L2(Rd;C2)
and essentially self-adjoint on C∞0 (Rd;C2).

The operator M(A, V ) is the quantum Hamil-
tonian of a non-relativistic quantum particle
of spin 1

2, subject to an electromagnetic po-
tential (A, V ).

Similarly to H, the Pauli operator M is gauge
invariant. In contrast to H, there is no dia-
magnetic inequality for M .

More information on the Pauli operator in
arbitrary dimension could be found, e.g. in
I.Shigekawa, Spectral properties of a Schrödinger
operators with magnetic fields for a spin 1

2
particle, J.Funct.Anal. 101 (1991), 255-285.
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2.2. 2D Pauli operator

Let d = 2. Set b := B12. Then

M(A,0) = H(A,0)I2 − bσ̂3.

Let ϕ be a solution of the Poisson equation

∆ϕ = b.

Then, up to a gauge transform, we have

A =

(
−
∂ϕ

∂y
,
∂ϕ

∂x

)
,

and

M(A,0) =

(
m− 0
0 m+

)
:=

(
a∗a 0
0 aa∗

)
,

where, as earlier,

a := −2ie−ϕ
∂

∂z
eϕ, a∗ := −2ieϕ

∂

∂z
e−ϕ.
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Therefore,

Ker M(A,0) ={
(u1, u2) ∈ L2(Rd,C2) |u1 ∈ Ker a, u2 ∈ Ker a∗

}
,

and

Ker a =
{
u ∈ L2(R2)|u = ge−ϕ,

∂g

∂z
= 0

}
,

Ker a∗ =
{
u ∈ L2(R2)|u = heϕ,

∂h

∂z
= 0

}
.

Note that we have again

[a, a∗] = 2b,

but b is no longer assumed to be constant.
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Exercise: Calculate dim Ker M(A,0) if:

(i) b ∈ C∞0 (R2);

(ii) b is periodic, i.e.

b(x) =
∑
k∈Z2

bke
ik·x, x ∈ R2,

with, say, {bk}k∈Z2 ∈ `1(Z2).
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2.3. 3D magnetic Pauli operator
Let d = 3. Then we have

M(A,0) = H(A,0)I2 −
3∑

j=1

Bjσ̂j.

Let us consider magnetic fields of constant
direction B = (0,0, b). Due to the closedness
of B, we have

b = b(x⊥), x⊥ = (x, y) ∈ R2.

As above, let ϕ be a solution of

∆ϕ(x⊥) = b(x⊥).

Then we can choose

A =

(
−
∂ϕ

∂y
,
∂ϕ

∂x
,0

)
.

Hence,

M(A,0) =

(
M− 0

0 M+

)
where

M± = (−i∇−A)2 ± b = M±⊥ ⊗ Iq + I⊥ ⊗Mq,

M±⊥ := m±, and Mq = Hq = − d2

dx2
q
.
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3. Berezin-Toeplitz operators

3.1. Motivation: eigenvalue asymptotics for

the perturbed 2D Landau Hamiltonian

Let d = 2, b = const. > 0,

V ∈ L∞(R2;R), lim
|x|→∞

V (x) = 0.

Then

|V |1/2H
−1/2
L ∈ S∞(L2(R2)),

and

σess(HL+V ) = σess(HL) = σ(HL) =
∞⋃
j=0

{
Λj
}
.

However, generically, the Landau levels are

accumulation points of σdisc(HL + V ).

Assume V ≥ 0. Then the discrete eigenvalues

of HL+V (resp., of HL−V ) may accumulate

to the Landau levels only from above (resp.,

only from below).
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Notation: If Fj(V ;λ), j = 1,2, are two real

functionals of V , depending on λ > 0, we

write

F1(V ;λ) ∼ F2(V ;λ), λ ↓ 0,

if for each ε ∈ (0,1) we have

F2((1− ε)V ;λ) +Oε(1) ≤

F1(V ;λ) ≤

F2((1 + ε)V ;λ) +Oε(1).
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Let q ∈ Z+. Then we have

Tr 1(Λq−1,Λq−λ)(HL − V ) ∼ Tr 1(λ,∞)(pqV pq),

(2)

with Λ−1 = −∞, and

Tr 1(Λq+λ,Λq+1)(HL + V ) ∼ Tr 1(λ,∞)(pqV pq),

(3)

as λ ↓ 0.

Thus, the Berezin-Toeplitz operator pqV pq is

the effective Hamiltonian which governs the

eigenvalue asymptotics of the operators

HL ± V

near the Landau level Λq, q ∈ Z+.
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Steps of the proof of (2) - (3):

(i) The Birman-Schwinger principle implies

Tr 1(Λq+λ,Λq+1)(HL + V ) =

Tr 1(1,∞)(−V 1/2(HL−Λq−λ)−1V 1/2) +O(1),

Tr 1(Λq−1,Λq−λ)(HL − V ) =

Tr 1(1,∞)(V 1/2(HL − Λq + λ)−1V 1/2) +O(1),

as λ ↓ 0.
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(ii) We have

Tr 1(1,∞)(±V 1/2(HL − Λq ± λ)−1V 1/2) ∼

Tr 1(λ,∞)(V 1/2pqV
1/2), λ ↓ 0,

since

±V 1/2(HL − Λq ± λ)−1V 1/2 =

λ−1V 1/2pqV
1/2±V 1/2(HL−Λq±λ)−1(I−pq)V 1/2,

and the second term admits a uniform limit

as λ ↓ 0.

(iii) Finally, for λ > 0,

Tr 1(λ,∞)(V 1/2pqV
1/2) = Tr 1(λ,∞)(pqV pq),

since if T ∈ S∞(H1,H2), then

Tr 1(λ,∞)(T ∗T ) = Tr 1(λ,∞)(T T ∗), λ > 0.
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3.2. Basic properties of the Berezin-Toeplitz

operators

Fix q ∈ Z+. Let V ∈ L∞(R2). Then, evi-

dently,

‖pqV pq‖ ≤ ‖V ‖L∞(R2).

Let now V ∈ L1(R2). Then the explicit ex-

pression for the value of the integral kernel of

pq on the diagonal easily implies

‖pqV pq‖1 ≤
b

2π
‖V ‖L1(R2).

Interpolating, we find that if r ∈ [1,∞), and

V ∈ Lr(R2), then pqV pq ∈ Sr(L2(R2)), and

‖pqV pq‖rr ≤
b

2π
‖V ‖r

Lr(R2).

Moreover, if

V ∈ L1
loc(R2), lim

|x|→∞
V (x) = 0,

then pqV pq ∈ S∞(L2(R2)).
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Proposition 1. Let V ∈ L1
loc(R2;R) satisfy

lim|x|→∞ V (x) = 0. Assume that V is radially

symmetric, i.e. there exists v : [0,∞) → R
such that V (x) = v(|x|), x ∈ R2. Then the

eigenvalues of the operator pqV pq with do-

main pqL2(R2), counted with the multiplici-

ties, coincide with the set

1

k!

∫ ∞
0

v((2t/B)1/2)Lq(t)e
−ttkdt, k ∈ Z+.

Remark: If f is, say, a bounded function of

exponential decay, then

(Mf)(z) :=
∫ ∞

0
f(t)tz−1dt, z ∈ C, Re z > 0,

is the Mellin transform of f .
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3.3. Unitary equivalence of Berezin-Toeplitz

operators and ΨDOs with Weyl symbols

Let d ≥ 1, s : R2d → C be an appropriate

symbol. Then Opw(s) denotes the pseudod-

ifferential operator (ΨDO) acting in L2(Rd),

with Weyl symbol s, defined by

(Opw(s)u) (x) =

(2π)−d
∫
Rd

∫
Rd
s

(
x+ x′

2
, ξ

)
ei(x−x

′)·ξu(x′)dx′dξ.
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Let us recall some of the properties of Opw(s):

(i) Assume that

‖s‖Γ(R2d) :=

sup
{α,β∈Zd+ | |α|,|β|≤[d2]+1}

sup
(x,ξ)∈R2d

|∂αx∂
β
ξ s(x, ξ)| <∞.

Then Opw(s) ∈ L(L2(R2d)), and the Calderón-

Vaillancout-type estimates

‖Opw(s)‖ ≤ c0‖s‖Γ(R2d)

hold with a constant c0 independent of s.

(ii) Let s1, s2 be two symbols which satisfy

s2 = s1 ◦ κ

with a linear symplectomorphism κ. Then

there exists a unitary operator U = U(κ) such

that

Opw(s2) = U∗Opw(s1)U.

The operator U(κ), called the metaplectic

operator corresponding to κ, is defined uniquely

up to a unimodular factor.
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Introduce the harmonic oscillator

h := −
d2

dx2
+ x2,

self-adjoint in L2(R). We have

σ(h) =
∞⋃
q=0

{2q + 1},

dim Ker (h− (2q + 1)) = 1, q ∈ Z+.

Let πq be the orthogonal projection onto
Ker(h− (2q + 1)), q ∈ Z+. We have

πq = 〈·, ϕq〉L2(R)ϕq

where

ϕq(x) :=
Hq(x)e−x

2/2

(
√
π2qq!)1/2

, x ∈ R, q ∈ Z+,

Hq being the Hermite polynomials. Let 2πΨq

be the Wigner function associated with ϕq,
i.e. the Weyl symbol of πq. For (x, ξ) ∈ R2

and q ∈ Z+, we have

Ψq(x, ξ) =
(−1)q

π
Lq(2(x2 + ξ2))e−(x2+ξ2),

Lq being the Laguerre polynomials.
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For x ∈ R2 set

Vb(x1, x2) = V (−b−1/2x2,−b−1/2x1).

Proposition 2. There exists a unitary oper-

ator Ub : L2(R) ⊗ L2(R) → L2(R2) such that

for any V ∈ L1(R2) +L∞(R2) and q ∈ Z+, we

have

U∗b pqV pqUb = πq ⊗Opw(Vb ∗Ψq).

Idea of the proof: Let s1 be the symbol

(ξ1 + bx2/2)2 + (ξ2 − bx1/2)2 , (x, ξ) ∈ T ∗R2,

of the 2D Landau Hamiltonian, and s2 is the

symbol

b(ξ2
1 + x2

1)

of the operator (bh)⊗ I. Then there exists a

linear symplectomorphism κb such that s2 =

s1 ◦ κb. Then Ub is the metaplectic operator

U(κb).
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4. Spectral asymptotics for Berezin–Toeplitz

operators

Based on the articles:

[RW] G.D.Raikov, S.Warzel, Quasi-classical

versus non-classical spectral asymptotics for

magnetic Schrödinger operators with decreas-

ing electric potentials, Rev. Math. Phys. 14

(2002), 1051-1072,

and

[R1990] G.D.Raikov, Eigenvalue asymptotics

for the Schrödinger operator with homoge-

neous magnetic potential and decreasing elec-

tric potential. I. Behaviour near the essential

spectrum tips, Commun. P.D.E. 15 (1990),

407-434.
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4.1. Compactly supported symbols

Theorem 4. [RW] Let 0 ≤ V ∈ L∞(R2),

suppV be compact, and V ≥ C > 0 on an

open non-empty subset of R2. Fix q ∈ Z+.

Then

Tr 1(λ,∞)(pqV pq) = ϕ∞(λ)(1 + o(1)), λ ↓ 0,

(4)

where

ϕ∞(λ) := (ln | lnλ|)−1| lnλ|.
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The proof of Theorem 4 is based on Proposi-

tion 1, and reduces finally to the asymptotics

of integrals of the form

1

k!

∫ R
0

Lq(t)e
−ttkdt, R ∈ (0,∞), q ∈ Z+,

as k →∞.

Remarks: (i) Relation (4) is not semiclassi-

cal in the sense that the function ϕ∞(λ) is

essentially different from

Vq(λ) :=
1

2π

∣∣∣{(x, ξ) ∈ R2 |(Vb ∗Ψq)(x, ξ) > λ
}∣∣∣ ,

where | · | is the Lebesgue measure.

(ii) Let {λn,q}n∈N be the non-increasing se-

quence of the positive eigenvalues of pqV pq,

q ∈ Z+. Then (4) is equivalent to

lnλn,q = −n lnn (1 + o(1)), n→∞.
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In N. Filonov, A. Pushnitski, Spectral asymp-
totics of Pauli operators and orthogonal poly-
nomials in complex domains, Comm. Math.
Phys. 264 (2006), 759-772, it has been
shown that under additional assumptions,

lnλn,q =

−n lnn+

(
1 +

bC(suppV )2

2

)
n(1 + o(1))

as n→∞, C(K) being the logarithmic capac-
ity of a compact set K ⊂ R2.

Let us recall the definition of C(K). Let
M(K) denote the set of probability measures
on K. Then

C(K) := e−I(K)

where

I(K) := inf
µ∈M

∫
K×K

ln |x− y|−1dµ(x)dµ(y).

If K is simply connected, then C(K) is equal
to the conformal radius of K.
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4.2. Symbols of exponential decay

Theorem 5. [RW] Let 0 ≤ V ∈ L∞(R2) and

lnV (x) = −µ|x|2β(1 + o(1)), |x| → ∞, (5)

with β ∈ (0,∞), µ ∈ (0,∞). Fix q ∈ Z+.

Then

Tr 1(λ,∞)(pqV pq) = ϕβ,b(λ)(1 + o(1)), λ ↓ 0,

(6)

where

ϕβ,b(λ) :=



b
2µ1/β | lnλ|1/β if 0 < β < 1,

1
ln (1+2µ/b)| lnλ| if β = 1,

β
β−1(ln | lnλ|)−1| lnλ| if 1 < β <∞.
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The proof of Theorem 6 is based on Proposi-

tion 1 and the following corollary from Propo-

sition 2:

Corollary 3. Let q ∈ Z+, V ∈ C2q
b (R2). Then

the operator pqV pq is unitarily equivalent to

p0(Lq(−∆/2b)V )p0, Lq being the Laguerre poly-

nomials.

Thus, finally, the proof reduces to the asymp-

totics of integrals of the form

1

k!

∫ ∞
0

wq((2t/b)1/2)e−ttkdt,

as k →∞. Here

wq(r) :=

Lq

(
−

1

2br

d

dr
r
d

dr

)(
e−µr

2β
ζ(r)

)
, r ∈ (0,∞), q ∈ Z+,

and ζ ∈ C∞([0,∞)) is a cut-off function, van-

ishing near the origin, and identically equal to

one outside a bounded interval.
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Remarks: (i) If 0 < β < 1, relation (6) is

semiclassical, and if β > 1, it is not semi-

classical. If β = 1, then the order of (6) is

semiclassical, while the coefficient is not.

(ii) Relation (6) is equivalent to

lnλn,q =


−µ(2n/b)β(1 + o(1)), 0 < β < 1,

−(ln (1 + 2µ/b))n(1 + o(1)), β = 1,

−β−1
β n lnn, β > 1,

(7)

as n→∞. If we assume

lnV (x) = −µ|x|2β +O(ln |x|), |x| → ∞,

instead of (5), then we can improve (7) in

the following way:
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If β ∈ (0,1), then there exist constants fj,

j ∈ N, with f1 = µ(2/b)β, such that

lnλn,q =

−
∑

1≤j< 1
1−β

fj n
(β−1)j+1 +O(lnn), n→∞.

If β = 1, then

lnλn,q = − (ln (1 + 2µ/b))+O(lnn), n→∞.

If β ∈ (1,∞), then there exist constants gj,

j ∈ N, such that

lnλn,q = −
β − 1

β
n lnn+

(
β − 1− ln (µβ(2/b)β)

β

)
n−

∑
1≤j< β

β−1

gj n
(1
β−1)j+1

+O(lnn), n→∞.
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4.3. Symbols of power-like decay

Theorem 6. [R1990] Let 0 ≤ V ∈ C1(R2),

and

V (x) = v0(x/|x|)|x|−ρ(1 + o(1)),

|∇V (x)| = O(|x|−ρ−1),

as |x| → ∞, with ρ > 0, and 0 < v0 ∈ C(S1).

Fix q ∈ Z+. Then

Tr 1(λ,∞)(pqV pq) =

Vq(λ)(1 + o(1)) = ψρ,b(λ)(1 + o(1)), λ ↓ 0,

(8)

where

ψρ,b(λ) := λ−2/ρ b

4π

∫ 2π

0
v0(cos θ, sin θ)2/ρdθ.
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The proof of Theorem 6 is based on Propo-

sition 1.

Evidently, relation (8) is semiclassical. It is

equivalent to

λn,q =

(
b

4π

∫ 2π

0
v0(cos θ, sin θ)2/ρdθ

)ρ/2

n−ρ/2(1+o(1)),

as n→∞.
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4.4. Magnetic and metric perturbations

Up to now we discussed only electric per-

turbations of the 2D Landau Hamiltonian.

Decaying perturbations of the magnetic field

and of the metric are also of considerable in-

terest, and the spectral asymptotics for such

perturbations have been investigated by var-

ious authors.

Combined electric, magnetic and metric per-

turbation of power-like decay were consid-

ered V. Ivrii, Microlocal Analysis and Precise

Spectral Asymptotics, Springer Monographs

in Mathematics. Springer-Verlag, Berlin, 1998.
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Combined electric and magnetic perturbations

of compact support were studied in G. Rozen-

blum, G. Tashchiyan, On the spectral prop-

erties of the perturbed Landau Hamiltonian,

Comm. Partial Differential Equations 33 (2008),

1048–1081.

Results related to metric perturbations of power-

like and exponential decay, or of compact

support, can be found in T. Lungenstrass, G.

Raikov, Local spectral asymptotics for met-

ric perturbations of the Landau Hamiltonian,

Analysis & PDE 8 (2015), 1237-1262.
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Let us mention here also two articles which
concern geometric perturbations of HL:

A. Pushnitski, G. Rozenblum, Eigenvalue clus-
ters of the Landau Hamiltonian in the exte-
rior of a compact domain, Doc. Math. 12
(2007), 569–586.

The perturbed operator is the Landau Hamil-
tonian, but it acts in L2(Ω) and is equipped
with Dirichlet boundary conditions; here, Ω =
R2 \K with a suitable compact K ⊂ R2.

M. Persson, Eigenvalue asymptotics of the
even-dimensional exterior Landau-Neumann
Hamiltonian, Adv. Math. Phys. 2009, Art.
ID 873704, 15 pp.

The perturbed operator is the Landau Hamil-
tonian, but it acts in L2(Ω) and is equipped
with Neumann boundary conditions.
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4.5. Extensions to 2D Pauli operators

Let d = 2. Assume that, say, b is a periodic

magnetic field with non-zero mean value. Let

0 ≤ V ∈ L∞(R2), lim
|x|→∞

V (x) = 0.

Denote by ℘ the orthogonal projection onto

Ker a. Then, similarly to the Schrödinger

case, we have

Tr 1(−∞,−λ)(M(A,−V )) ∼ Tr 1(λ,∞)(℘V ℘),

Tr 1(λ,C)(M(A, V )) ∼ Tr 1(λ,∞)(℘V ℘),

as λ ↓ 0.

Thus, we arrive at the problem of investigat-

ing the eigenvalue asymptotics of the com-

pact Berezin-Toeplitz operator ℘V ℘.
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Results on the asymptotics as λ ↓ 0 of

Tr 1(−∞,−λ)(M(A,−V )), Tr 1(λ,C)(M(A, V ),

for various b and V , are contained, for in-

stance, in:

A. Iwatsuka, H. Tamura, Asymptotic distribu-

tion of negative eigenvalues for two-dimensional

Pauli operators with nonconstant magnetic

fields, Ann. Inst. Fourier 48 (1998), 479–

515.

G.D.Raikov, Spectral asymptotics for the per-

turbed 2D Pauli operator with oscillating mag-

netic fields. I. Non-zero mean value of the

magnetic field, Markov Processes and Re-

lated Fields 9 (2003), 775-794.
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5. Singularities of the spectral shift func-
tion at the Landau levels

Based on the articles:

[BPR] V.Bruneau, A.Pushnitski, G.D.Raikov,
Spectral shift function in strong magnetic fields,
Algebra i Analiz 16 (2004), 207-238; transla-
tion in St. Petersburg Math. J., 16 (2005),
181-209,

[FR] C.Fernández, G.D.Raikov, On the sin-
gularities of the magnetic spectral shift func-
tion at the Landau levels, Ann. H. Poincaré
5 (2004), 381-403,

and

[R2006] G.D.Raikov, Spectral shift function
for magnetic Schrödinger operators, Mathe-
matical Physics of Quantum Mechanics, Lec-
ture Notes in Physics, 690 (2006), 451-465.
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5.1. The spectral shift function (SSF)

Let d = 3, b > 0, B = (0,0, b), curlA = B.

Let H0 denote the 3D Landau Hamiltonian

HL = H(A,0). Assume

V ∈ C(R3;R), |V (x)| ≤ C〈x⊥〉−ρ⊥ 〈xq〉−ρq,

x = (x⊥, xq), C ∈ [0,∞), ρ⊥ > 2, ρq > 1. (9)

Set H := H0 + V . Then

(H − i)−1 − (H0 − i)−1 ∈ S1(L2(R3)),

and there exists a unique

ξ = ξ(·;H,H0) ∈ L1(R; (1 + E2)−1dE)

such that the Lifshits-Krein trace formula

Tr (f(H)− f(H0)) =
∫
R
ξ(E;H,H0)f ′(E)dE

holds for each f ∈ C∞0 (R), and

ξ(E;H,H0) = 0

for each E ∈ (−∞, inf σ(H)).
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The function ξ(·;H,H0) is called the spec-

tral shift function (SSF) for the operator pair

(H,H0).

For almost every E > b = inf σac(H), the

SSF ξ(E;H,H0) is proportional to the scat-

tering phase for the operator pair (H,H0), i.e.

Birman-Krein formula

detS(E;H,H0) = e−2πiξ(E;H,H0)

holds true, S(E;H,H0) being the scattering

matrix for the operator pair (H,H0).

Moreover, for almost every E < b we have

ξ(E;H,H0) = −Tr 1(−∞,E)(H).
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Properties of the SSF ([BPR]):

• ξ(·;H,H0) is bounded on every compact

subset of R \ (2bZ+ + b);

• ξ(·;H,H0) is continuous on

R \ ((2bZ+ + b)∪σpp(H)) where σpp(H) is

the set of the eigenvalues of H.
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5.2. Asymptotics of the SSF near Λq

Our goal is to describe the asymptotic be-
haviour of the SSF ξ(E;H,H0) as E → Λq,
q ∈ Z+.

Let V satisfy (9). For x⊥ ∈ R2, λ ≥ 0, set

W (x⊥) :=
∫
R
|V (x⊥, xq)|dxq,

Wλ =Wλ(x⊥) :=

(
w11 w12
w21 w22

)
,

where

w11 :=
∫
R
|V (x⊥, xq)| cos2 (

√
λxq)dxq,

w12 = w21 :=∫
R
|V (x⊥, xq)| cos (

√
λxq) sin (

√
λxq)dxq,

w22 :=
∫
R
|V (x⊥, xq)| sin2 (

√
λxq)dxq.

We have

rank pqWpq =∞, rank pqWλpq =∞, λ ≥ 0.
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Theorem 7. [FR] Let V satisfy

|V (x)| ≤ C〈x〉−ρ, x ∈ R3, ρ > 3, C ∈ [0,∞).

(10)

Assume moreover that V ≥ 0 or V ≤ 0. Fix

q ∈ Z+. Then we have

ξ(Λq − λ;H,H0) = O(1), λ ↓ 0,

if V ≥ 0, and

ξ(Λq−λ;H,H0) ∼ −Tr 1(2
√
λ,∞) (pqWpq) , λ ↓ 0,

if V ≤ 0. Moreover,

ξ(Λq+λ;H,H0) ∼
1

π
Tr arctan

(
pqWλpq

2
√
λ

)
, λ ↓ 0,

if V ≥ 0, and

ξ(Λq+λ;H,H0) ∼ −
1

π
Tr arctan

(
pqWλpq

2
√
λ

)
, λ ↓ 0,

if V ≤ 0.
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5.3. Proof of Theorem 7

A. Pushnitski’s representation of the SSF (A.
Pushnitski, A representation for the spectral
shift function in the case of perturbations of
fixed sign, St. Petersburg Math. J. 9 (1998),
1181–1194):

Assume that V satisfies (9). Then the norm
limit

T (E) := lim
δ↓0
|V |1/2(H0 − E − iδ)−1|V |1/2

exists for every E ∈ R\ (2bZ+ + b). Moreover,
T (E) is compact, and

0 ≤ ImT (E) ∈ S1.

Assume in addition that ±V ≥ 0. Then for
E ∈ R \ (2bZ+ + b),

ξ(E;H,H0) =

±
1

π

∫
R

Tr 1(1,∞)(∓(ReT (E)+t ImT (E)))
dt

1 + t2
.
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Then we have

±ξ(E;H,H0) ∼

1

π

∫
R

Tr 1(1,∞)(∓(ReTq(E)+t ImTq(E)))
dt

1 + t2

as E → Λq where, for E 6= Λq,

Tq(E) :=

lim
δ↓0
|V |1/2(pq ⊗ (Hq + Λq − E − iδ)−1)|V |1/2.

If E = Λq − λ with λ > 0, then Tq(E) =

Tq(E)∗ ≥ 0, and

ξ(E;H,H0) = O(1), λ ↓ 0,

if V ≥ 0, while

−ξ(E;H,H0) ∼ Tr 1(1,∞)(Tq(Λq − λ)) ∼

Tr 1(1,∞)

(
|V |1/2

(
pq ⊗O−λ

)
|V |1/2

)
=

Tr 1(2
√
λ,∞)(pqWpq), λ ↓ 0,

if V ≤ 0, O−λ being the operator with constant

integral kernel 1/(2
√
λ).
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If E = Λq + λ with λ ↓ 0, then

±ξ(E;H,H0) ∼

1

π

∫
R

Tr 1(1,∞)(∓tImTq(E))
dt

1 + t2
=

1

π
Tr arctan (ImTq(E)) =

1

π
Tr arctan

(√
|V |

(
pq ⊗O+

λ

)√
|V |

)
=

1

π
Tr arctan

(
pqWλpq

2
√
λ

)
,

O+
λ being the operator with integral kernel

cos
√
λ(xq − x′q)
2
√
λ

, xq, x′q ∈ R.
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5.4. A generalized Levinson formula

Corollary 4. [R2006] Let V satisfy (10), and

V ≤ 0. Fix q ∈ Z+. Then

lim
λ↓0

ξ(Λq + λ;H,H0)

ξ(Λq − λ;H,H0)
=

1

2 cos πρ

if W admits a power-like decay with decay

rate ρ > 2, or

lim
λ↓0

ξ(Λq + λ;H,H0)

ξ(Λq − λ;H,H0)
=

1

2

if W decays exponentially or has a compact

support.

Remark: The classical Levinson formula re-

lates the number of the negative eigenvalues

of −∆ + V , and limE↓0 ξ(E;−∆ + V,−∆).
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5.5. Extensions to Pauli operators
Theorem 7 admits extensions to 3D Pauli
operators with non constant magnetic fields
(0,0, b), b = b(x⊥) being, say, an appropri-
ate periodic magnetic field of non-zero mean
value. In this case the role of the Landau
levels is played by the origin.

The analogue of Theorem 7 for such Pauli
operators can be found in G. Raikov, Low
energy asymptotics of the spectral shift func-
tion for Pauli operators with nonconstant mag-
netic fields, Publ. Res. Inst. Math. Sci., 46
(2010), 645-670.

Related results for somewhat different mag-
netic fields of constant direction, and for neg-
ative energies (when the SSF is proportional
to the eigenvalue counting function) are con-
tained in A. Iwatsuka, H. Tamura, Asymp-
totic distribution of eigenvalues for Pauli op-
erators with nonconstant magnetic fields,
Duke Math. J. 93 (1998), 535–574.
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6. Resonances near the Landau levels
Based on the articles:

[BBR2007] J.-F.Bony, V.Bruneau, G.D.Raikov,
Resonances and spectral shift function near
the Landau levels, Ann. Inst. Fourier, 57
(2007), 629-671,

[BBR2014] J.-F. Bony, V. Bruneau, G. Raikov,
Counting function of characteristic values and
magnetic resonances, Commun. P.D.E. 39
(2014), 274–305,

and

[BBR Kyoto] J.-F. Bony, V. Bruneau, G. Raikov,
Resonances and spectral shift function sin-
gularities for magnetic quantum Hamiltoni-
ans, In: Proceedings of the Conference Spec-
tral and Scattering Theory and Related Top-
ics, Kyoto, Japan, 2011, RIMS Kokyuroku
Bessatsu B45 (2014), 77-100.

We assume d = 3, and use the notations
H0, H as in the previous section.
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6.1. Embedded eigenvalues

Theorem 8. [BBR Kyoto] Let

|V |1/2H
−1/2
0 ∈ S∞(L2(R3)).

Assume that V is axisymmetric, i.e. depends

only on |x⊥| and xq.
(i) Let V satisfy

−2b < V (x) ≤ −C1K(x), x ∈ R3,

where C > 0, and K ⊂ R3 is an open non-

empty set. Then each interval (Λq,Λq+1),

q ∈ Z+, contains at least one (embedded)

eigenvalue of H.

(ii) Let V satisfy

−2b < V (x) ≤ −C1K̃(x⊥)〈xq〉−ρq,

x = (x⊥, xq) ∈ R3,

where C > 0, ρq ∈ (0,2), and K̃ ⊂ R2 is

an open non-empty set. Then each inter-

val (Λq,Λq+1), q ∈ Z+, contains a sequence

of eigenvalues of H which converges to Λq+1.
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6.2. Meromorphic continuation of the resol-

vent of H and definition of resonances

For z ∈ C+ := {ζ ∈ C | Im ζ > 0}, we have

(H0 − z)−1 =
∞∑
q=0

pq ⊗ (Hq + Λq − z)−1 .

Recall that the resolvent (Hq − z)−1 with z ∈
C+ admits the integral kernel

−
ei
√
z|xq−x′q|

2i
√
z

, xq, x′q ∈ R, Im
√
z > 0.

Let M be the infinite-sheeted Riemann sur-

face of the family{√
z − Λq

}
q∈Z+

,

and let

P :M 7→ C \ (2bZ+ + b)

be the corresponding covering.
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For λ0 ∈ C and ε > 0 put

D(λ0, ε) := {λ ∈ C| |λ− λ0| < ε},

D(λ0, ε)
∗ := {λ ∈ C|0 < |λ− λ0| < ε}.

There exists an analytic bijection zq:

D(0,
√

2b)∗ 3 k 7→ zq(k) ∈ D∗q ⊂M,

such that P(zq(k)) = Λq + k2.

For N > 0 denote by MN the part of M
where Im

√
z − Λq > −N for all q ∈ Z+. Then,

∪N>0MN =M.
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Proposition 3. [BBR2007]

(i) For each N > 0 the operator-valued func-

tion

(H0 − z)−1 : e−N〈xq〉L2(R3)→ eN〈xq〉L2(R3)

has an analytic extension from C+ to MN .

(ii) Suppose that V satisfies

|V (x)| ≤ C〈x⊥〉−ρ⊥ exp (−N |xq|),

x = (x⊥, xq) ∈ R3, C ∈ [0,∞), (11)

for any N > 0 and some ρ⊥ > 0. Then for

each N > 0 the operator-valued function

(H − z)−1 : e−N〈xq〉L2(R3)→ eN〈xq〉L2(R3),

has a meromorphic extension from C+ toMN

whose poles and residue ranks do not depend

on N .
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We define the resonances of H as the poles

of the meromorphic extension of the resolvent

(H − z)−1, and denote their set by Res(H).

For z0 ∈ Res(H) define its multiplicity by

mult (z0) := rank
1

2iπ

∫
γ
(H − z)−1dz,

where γ is an appropriate circle centered at

z0.
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6.3. Resonance-free regions and regions with

infinitely many resonances

Theorem 9. [BBR2007)] Let 0 < s0 <
√

2b

and q ∈ Z+. Assume V satisfies (11) with

ρ⊥ > 2, and is of definite sign J. Then for

any δ > 0 there exists g0 > 0 such that:

(i) H0 + gV has no resonances in

{z = zq(k) |0 < |k| < s0, −JIm k ≤
1

δ
|Re k|}

for any 0 ≤ g ≤ g0.

(ii) If

W (x⊥) =
∫
R
|V (x⊥, xq)|dxq

satisfies lnW (x⊥) ≤ −C〈x⊥〉2, then for any

0 < g ≤ g0, the operator H0 + gV has an

infinite number of resonances in

{z = zq(k) |0 < |k| < s0, −JIm k >
1

δ
|Re k|}.
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The proof of Theorem (9) i based on the fol-

lowing

Proposition 4. Suppose that V satisfies (11)

with ρ⊥ > 2. Then z0 ∈ M is a resonance of

H if and only if −1 is an eigenvalue of

TV (z0) := signV |V |1/2(H0 − z0)−1|V |1/2.

Moreover,

det2

(
(H − z)(H0 − z)−1

)
= det2

(
I + TV (z)

)
,

has an analytic continuation from C+ to M
whose zeroes are the resonances of H. If z0 is

a resonance, then there exists a holomorphic

function f(z), for z close to z0, such that

f(z0) 6= 0 and

det2

(
I + TV (z)

)
= (z − z0)l(z0)f(z),

with l(z0) = mult (z0).
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6.4. Asymptotics of the resonance counting

function

For q ∈ Z+ and z ∈ D(0,
√

2b) set

Gq(z) := J |V |1/2
(
pq ⊗Oz

)
|V |1/2−

zJ |V |1/2 ∑
j 6=q

(
pj⊗

(
Hq+2b(j−q)+z2

)−1)
|V |1/2,

Oz being the operator with integral kernel

1

2
ez|xq−x

′
q|, xq, x′q ∈ R.

Let Πq be the orthogonal projection onto

Ker Gq(0).
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Theorem 10. [BBR2014] Let V satisfy (11)

with ρ⊥ > 2 and have a definite sign J = ±1.

Let

W (x⊥) =
∫
R
|V (x⊥, xq)|dxq, x⊥ ∈ R2,

satisfy the assumptions of Theorem 4,5, or

6. Fix q ∈ Z+, and assume that I − G′q(0)Πq

is invertible, Then for 0 < r0 <
√

2b we have∑
zq(k)∈Res(H):r<|k|<r0

mult (zq(k)) =

Tr 1(2r,∞)(pqWpq)(1 + o(1))

as r ↓ 0.
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6.5. Proof of Theorem 10

(i) Abstract results
Let D be a domain of C containing 0, and let
H be a separable Hilbert space. Consider the
analytic function

G : D −→ S∞(H).

Let Π(G) be the orthogonal projection onto
KerG(0).

Assumptions:
C1: The operator G(0) is self-adjoint;
C2: The operator I −G′(0)Π(G) is invertible.

Let Ω ⊂ D \ {0}. Set

ZG(Ω) =
{

characteristic values of G on Ω
}

:=

{
z ∈ Ω | I −

G(z)

z
is not invertible

}
.
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By C1, and C2 the set ZG(Ω) is discrete. For

z0 ∈ ZG(Ω) denote

Mult(z0) :=

1

2πi
Tr

∫
γ

(
I −

G(z)

z

)′(
I −

G(z)

z

)−1
dz

where γ is an appropriate circle centered at

z0. Set

NG(Ω) :=
∑

z0∈ZG(Ω)

Mult(z0).

If ∂Ω is regular, and ZG(Ω) ∩ ∂Ω = ∅, then

NG(Ω) = ind∂Ω

(
I −

G(z)

z

)
:=

1

2πi
Tr

∫
∂Ω

(
I −

G(z)

z

)′(
I −

G(z)

z

)−1
dz.
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Proposition 5. Assume C1 and C2. Suppose

that the origin is an accumulation point of

ZG(D \ {0}). Then we have

|Im z0| = o(|z0|), z0 ∈ ZG(D \ {0}),

as z0 → 0. If, moreover, ±G(0) ≥ 0, then

±Re z0 ≥ 0

for z0 ∈ ZG(D \ {0}) with |z0| small enough.
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For 0 < a < b <∞ and θ > 0 set

Cθ(a, b) := {x+ iy ∈ C | a < x < b, |y| < θx} .

Proposition 6. Assume C1 and C2. Suppose

moreover that

Tr 1(r,∞)(G(0)) = Φ(r)(1 + o(1)), r ↓ 0,

with Φ(r) = Cr−γ, or Φ(r) = C| ln r|γ, or

Φ(r) = C
| ln r|

ln | ln r|, and some γ, C > 0. Then

we have

NG(Cθ(r,1)) = Φ(r)(1 + o(1)), r ↓ 0,

for any θ > 0.
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(ii) Sketch of the proof of Theorem 10

• For q ∈ N and k ∈ D(0,
√

2b)∗ we have

I + TV (zq(k)) = I −
Gq(ik)

ik

i.e. zq(k) ∈ Res(H) if and only if ik is a

characteristic value of Gq. Moreover,

mult (zq(k)) = Mult (ik).

• By Proposition 5 with G = Gq, we have

{zq(k) ∈ Res(H) | r < |k| < r0} =

{zq(k) ∈ Res(H) | ± ik ∈ Cθ(r, r0)}+O(1),

as r ↓ 0.

• Now the claim of Theorem 10 follows from

Proposition 6 with G = Gq since

Tr 1(r,∞)(Gq(0)) = Tr 1(2r,∞)(pqWpq).
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7. High-energy behaviour of the spectral

clusters for the 2D Landau Hamiltonian

Based on the articles:

[PRVB] A. Pushnitski, G. Raikov, C. Villegas-

Blas, Asymptotic density of eigenvalue clus-

ters for the perturbed Landau Hamiltonian,

Commun. Math. Phys. 320 (2013), 425 -

453,

and

[LR] T. Lungenstrass, G. Raikov, A trace

formula for long-range perturbations of the

Landau Hamiltonian, Ann. H. Poincaré 15

(2014), 1523-1548.
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7.1. Shrinking of the spectral clusters

Let d = 2, H0 be the 2D Landau Hamilto-

nian in constant scalar magnetic field b > 0.

Assume that V satisfies

V ∈ C(R2;R), |V (x)| ≤ C〈x〉−ρ,

x ∈ R2, C ∈ [0,∞), (12)

with some ρ > 0.

Theorem 11. (i) [PRVB] Assume that V sat-

isfies (12) with ρ > 1. Then

σ(H) ⊂
⋃

q∈Z+

(
Λq − C1λ

−1
2

q ,Λq + C1λ
−1

2
q

)

with a constant C1 > 0.

(ii) [LR] Assume that V satisfies (12) with

ρ ∈ (0,1). Then

σ(H) ⊂
⋃

q∈Z+

(
Λq − C2λ

−ρ2
q ,Λq + C2λ

−ρ2
q

)

with a constant C2 > 0.
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7.2 Asymptotic density of the spectral

clusters

(i) Short–range V

Assume that V satisfies (12) with ρ > 1. De-

fine the Radon transform of V ,

Ṽ (ω, s) :=
1

2π

∫
R
V (sω + tω⊥)dt,

where

ω = (ω1, ω2) ∈ S1, ω⊥ = (−ω2, ω1), s ∈ R.

Note that assumption (12) with ρ > 1 entails

|Ṽ (ω, s)| ≤ C(1 + |s|)1−ρ, ω ∈ S1, s ∈ R.

Theorem 12. [PRVB] Let V ∈ C(R2;R) sat-

isfy (12) with ρ > 1. Then

lim
q→∞Λ

−1/2
q Trϕ(

√
Λq(H − Λq)) =

1

2π

∫
S1

∫
R
ϕ(Ṽ (ω, s)) ds dω (13)

for each ϕ ∈ C∞0 (R \ {0}).
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For [α, β] ⊂ R \ {0} and q ∈ Z+ set

µshort
q ([α, β]) :=∑

Λq+αΛ
−1/2
q ≤λ≤Λq+βΛ

−1/2
q

dim Ker (H − λ),

µshort
∞ ([α, β]) :=

1

2π

∣∣∣Ṽ −1([b−1α, b−1β])
∣∣∣ .

Then (13) is equivalent to

lim
q→∞Λ

−1/2
q µshort

q ([α, β]) = µshort
∞ ([α, β]),

for any α, β, such that αβ > 0 and

µshort
∞ ({α}) = µshort

∞ ({β}) = 0.
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(ii) Long–range V

Let κ ∈ R. We’ll write:

• u ∈ Sκ1(R2) if u ∈ C∞(R2) satisfies

|Dαu(x)| ≤ Cα〈x〉κ−|α|, α ∈ Z2
+;

• u ∈ H]κ(R2) if u ∈ C∞(R2 \ {0}) is homo-

geneous of order κ.

Assume that V ∈ H]−ρ(R2) with ρ ∈ (0,1), and

define its mean–value transform

V̊(x) :=
1

2π

∫
S1

V(x− ω)dω, x ∈ R2.

Since ρ ∈ (0,1), we have V̊ ∈ C(R2).

Moreover, supx∈R2 |x|ρ|V̊(x)| <∞.
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Theorem 13. Let V ∈ S−ρ1 (R2) with ρ ∈ (0,1).

Assume that there exists V ∈ H]−ρ(R2) such

that

|V (x)− V(x)| ≤ C|x|−ρ−ε, x ∈ R2, |x| > 1,

with some constant C and ε > 0. Then

lim
q→∞Λ−1

q Trϕ(Λ
ρ/2
q (H − Λq)) =

1

2πb

∫
R2
ϕ(bρV̊(x))dx (14)

for each ϕ ∈ C∞0 (R \ {0}).
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For [α, β] ⊂ R \ {0} and q ∈ Z+ set

µlong
q ([α, β]) :=∑

Λq+αΛ
−ρ/2
q ≤λ≤Λq+βΛ

−ρ/2
q

dim Ker (H − λ),

µlong
∞ ([α, β]) :=

1

2πb

∣∣∣V̊−1([b−ρα, b−ρβ])
∣∣∣ .

Then (14) is equivalent to

lim
q→∞Λ−1

q µlong
q ([α, β]) = µlong

∞ ([α, β]),

for any α, β, such that αβ > 0 and

µlong
∞ ({α}) = µlong

∞ ({β}) = 0.
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7.3. Semiclassical interpretation

For (x, ξ) ∈ T ∗R2, consider the Hamiltonian

function

H(ξ,x) =
(
ξ1 +

1

2
bx2

)2
+
(
ξ2 −

1

2
bx1

)2
.

The projections of the orbits of the Hamilto-

nian flow of H onto the configuration space

are circles of radius
√
E/b; here E > 0 is the

energy corresponding to the orbit. The clas-

sical particles move around these circles with

period Tb = π/b. The orbits can be param-

eterized by the energy E > 0 and the center

c ∈ R2 of the circle. Let γ(c, E, t), t ∈ [0, Tb),

be the path in the configuration space corre-

sponding to such an orbit. Set

Av(V )(c, E) :=
1

Tb

∫ Tb
0

V (γ(c, E, t))dt.
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Then, under the hypotheses of Theorem 12

we have

1

2π

∫
S1

∫
R
ϕ(Ṽ (ω, s))ds dω =

b

2π
lim
E→∞

1√
E

∫
R2
ϕ(
√
EAv(V )(c, E)) dc, (15)

and the combination of (13) and (15) implies

lim
q→∞

1√
Λq

Trϕ(
√

Λq(H − Λq)) =

b

2π
lim
E→∞

1√
E

∫
R2
ϕ(
√
EAv(V )(c, E)) dc. (16)

85



Similarly, under the hypotheses of Theorem

13 we have

1

2πb

∫
R2
ϕ(bρV̊(x))dx =

b

2π
lim
E→∞

1

E

∫
R2
ϕ(Eρ/2 Av(V )(c, E)) dc. (17)

and the combination of (14) and (17) implies

lim
q→∞

1

Λq
Tr ϕ(Λ

ρ/2
q (H − Λq)) =

b

2π
lim
E→∞

1

E

∫
R2
ϕ(Eρ/2 Av(V )(c, E)) dc. (18)
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Relations (16) and (18) could be interpreted

in the spirit of the averaging principle for sys-

tems close to integrable ones (see e.g. Sec-

tion 52 in V. I. Arnold, Mathematical Meth-

ods of Classical Mechanics, Graduate Texts

in Mathematics, 60 1989).

According to this principle, a good approxi-

mation is obtained if one replaces the original

perturbation by its average along the orbits

of the free dynamics.
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7.4. Proof of Theorem 11

We recall that Theorem 11 concerns the shrink-

ing of the eigenvalue clusters of H to the Lan-

dau levels Λq.

First, we describe a suitable approximation of

Opw(Vb∗Ψq). For r > 0 and ϕ ∈ S(R2) define

the distribution

δr(ϕ) :=
1

2π

∫ 2π

0
ϕ(r cos θ, r sin θ)dθ.

Proposition 7. [PRVB, LR] Assume that V ∈
S−ρ1 (R2) with ρ > 0. Then

‖Opw(Vb ∗Ψq)−Opw(Vb ∗ δ√2q+1)‖2 =

O(Λ
−3/4
q ) (19)

as q →∞.
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Estimate (19) could be interpreted as equidis-

tribution of the eigenfunctions of the har-

monic oscillator h, i.e. as a weak convergence

as q →∞ of the Wigner function 2πΨq asso-

ciated with the qth normalized eigenfunction

of h, to the measure invariant with respect

to the classical flow.

The key ingredient of the proof of Theprem

11 is:

Proposition 8. [PRVB, LR] Assume that V ∈
S−ρ1 (R2) with ρ > 0. Then

‖Opw(Vb ∗ δk)‖ =


O(k−ρ) if ρ ∈ (0,1),
O(k−1 ln k) if ρ = 1,
O(k−1) if ρ > 1,

as k →∞.

The proof is based on estimates of Calderón–

Vaillancourt type for the norms of Weyl ΨDOs.
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Applying Proposition 8 above, Proposition 2

on the unitary equivalence of pqV Pq and

Opw(Vb ∗Ψq), and Proposition 7 concerning

the approximation of Opw(Vb∗Ψq) by Opw(Vb∗
δ√2q+1), we obtain the following:

Proposition 9. Assume that V satisfies (12)

with ρ > 0. Then

‖pqV pq‖ =


O(Λ

−ρ/2
q ) if ρ ∈ (0,1),

O(Λ
−1/2
q ln Λq) if ρ = 1,

O(Λ
−1/2
q ) if ρ > 1,

(20)

as q →∞.

Theorem 11 now follows from Proposition 9,

and the Birman–Schwinger principle.
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7.5. Proof of Theorem 12

Let us recall that Theorem 12 concerns the

asymptotic density of the eigenvalue clusters

of H in the case of short–range V .

Although the reduction is highly non trivial,

Theorem 12 follows from the Stone–Weierstrass

theorem and the following:

Proposition 10. [PRVB] Assume that V sat-

isfies (12) with ρ > 1. Then

lim
q→∞Λ

(`−1)/2
q Tr(pqV Pq)

` =

b`

2π

∫
S1

∫
R
Ṽ (ω, s)` ds dω

for every integer ` > 1/(ρ− 1).
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The key ingredient of the proof of Proposi-

tion 10 is:

Proposition 11. [PRVB] Let V ∈ C∞0 (R2).

Then for each ` ∈ N we have

lim
q→∞Λ

(`−1)/2
q Tr Opw(Vb ∗ δ√2q+1)` =

1

2π

∫
S1

∫
R
Ṽ (ω, s)` ds dω.

The proof is mainly based on the stationary

phase method.
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7.6. Proof of Theorem 13

Let us recall that Theorem 13 concerns the

asymptotic density of the eigenvalue clusters

of H in the case of long–range V .

The Dynkin-Helffer–Sjöstrand formula, suit-

able estimates in Schatten–von Neumann classes,

and the Schur–Feshbach formula imply:

Proposition 12. Under the hypotheses of The-

orem 13 we have

Trϕ(Λ
ρ/2
q (H−Λq)) = Trϕ(Λ

ρ/2
q pqV pq)+o(Λq)

as q →∞.
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Theorem 13 now follows from Proposition 12

and the following:

Proposition 13. [LR] Under the hypotheses

of Theorem 13 we have

Tr ϕ(Λ
ρ/2
q pqV pq) =

Tr ϕ(Λ
ρ/2
q Opw(Vb ∗ δ√2q+1)) + o(Λq) (21)

as q →∞, and

lim
q→∞Λ−1

q Tr ϕ(Λ
ρ/2
q Opw(Vb ∗ δ√2q+1)) =

1

2πb

∫
R2
ϕ(bρV̊(x))dx. (22)
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The proof of (21) employs suitable estimates

in Schatten–von Neumann classes.

The proof of (22) is of semiclassical nature

since Λ
ρ/2
q Opw(Vb ∗ δ√2q+1) is unitarily equiv-

alent to the ΨDO with Weyl symbol

s~(x, ξ) := bρV̊1(x, ~ξ), (x, ξ) ∈ T ∗R,

with

~ :=
1

2q + 1
.

However since this symbol is not smooth, a

suitable approximation by smooth symbols is

used at first, and then standard semiclassical

techniques are applied.
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