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Abstract. The main goal of the course is to show the important role of the Berezin-
Toeplitz operators in the spectral and scattering theory of magnetic quantum Hamil-
tonians.
First, I will consider the magnetic Schrödinger operator H, and will recall some of its
basic properties such as the gauge invariance and the diamagnetic inequality. I will
allocate special attention to the constant magnetic fields in space dimensions d = 2, 3
where the spectral properties of H differ drastically: as is well known, if d = 2, then
the spectrum of H consists of an arithmetic progression of infinitely degenerated
eigenvalues Λq, q ∈ Z+, called Landau levels, while if d = 3 the spectrum of H is
absolutely continuous, and the Landau levels play the role of spectral thresholds.
Further, in the case d = 2, I will consider the perturbed operator H + V where V is
a real-valued decaying potential, and will show that the effective Hamiltonian which
governs the asymptotics of the eigenvalues of H + V near a fixed Landau level Λq is
the operator PqV Pq where Pq is the orthogonal projection onto Ker (H−Λq). PqV Pq

can be identified as a Berezin-Toeplitz operator since the subspace P0L
2(R2) is the

Fock-Segal-Bargmann space of holomorphic functions, while the subspaces PqL
2(R2),

q ≥ 1, are obtained from P0L
2(R2) by the action of the qth power of the magnetic

creation operator.
Next, in the case d = 3, I will show that appropriate Berezin-Toeplitz operators play
a crucial role in the analysis of the singularities of the Krein spectral shift function
(SSF) for the operator pair (H,H +V ) with rapidly decaying V , and the asymptotic
distribution of the resonances of H + V near a fixed Landau level.
Finally, in the case d = 2, I will introduce the eigenvalue clusters around the Landau
levels Λq, q ∈ Z+, for the operator H + V , and will show that these clusters shrink
as q → ∞. Moreover, I will present two trace formulae describing the asymptotic
density of the eigenvalue clusters in the case of short-range and long-range pertur-
bations V , respectively.
If time permits, extensions to Pauli and Dirac operators, as well as generalizations
to magnetic and metric perturbations, will be briefly discussed.
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Tentative Plan of the Course:

Lecture 1. Magnetic Schrödinger operator H in L2(Rd), d ≥ 2. Gauge invariance,
diamagnetic inequality. Spectrum of H in constant magnetic fields for d = 2, 3.
Magnetic Pauli operators in L2(Rd;C2), d = 2, 3. Aharonov-Casher theorem and its
generalizations. Magnetic Dirac operators.
Perturbations of H by decaying electric potentials V . The Berezin-Toeplitz opera-
tors as effective Hamiltonians governing the local spectral asymptotics for H + V
near the Landau levels in the case d = 2. Extensions to Pauli operators.
Unitary equivalence of the Berezin-Toeplitz operators and pseudo-differential
operators of anti-Wick type.

Lecture 2. Eigenvalue asymptotics near the Landau levels for the operator H + V
in the case d = 2, and V of power-like decay, exponential decay, and compact
support: transition from semi-classical to non semi-classical behavior. Extensions
to Pauli operators. Generalizations for magnetic and metric perturbations.
Spectral shift function (SSF) for the operator pair (H,H + V ) in the case d = 3.
A. Pushnitski’s representation of the SSF. Basic properties of the SSF. Asymptotic
behavior of the SSF near the Landau levels. A generalized Levinson formula.
Extensions to Pauli and Dirac operators.
Embedded eigenvalues for the operator H + V in the case d = 3. Meromorphic
continuation of the resolvent of H + V and definition of resonances. Resonance-free
regions and regions with infinitely many resonances. Asymptotic distribution of the
resonances near the Landau levels.

Lecture 3. The effect of the shrinking of the eigenvalue clusters for H + V in the
case d = 2 for short-range and long-range perturbations V . Radon transform of a
short-range V and mean-value transform of homogeneous long range V . Asymptotic
density of the eigenvalue clusters for H + V . Semi-classical interpretation in the
spirit of the averaging principle.
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