1 常微分方程式

1.1 ルンゲ・クッタ法

p-次のテイラー展開法の勾配関数 \mathbf{F}_{Tp} は適当な条件の下で

$$\sup_{t_0 \le t \le T-h} ||\widetilde{\mathbf{F}}(t, \mathbf{u}(t); h) - \mathbf{F}_{Tp}(t, \mathbf{u}(t); h)|| \le Ch^p$$

を満たし, *p* 次の局所打切り誤差が期待できた.しかしながら, テイラー展開法では f^(p-1) を用いる ため, f の偏導関数が既知で, 計算可能である事が必要であった.

ルンゲ・クッタ法は f のみを用いてテイラー展開法を近似するものであると言える. 以下, u は連続, f は C^p 級とする.

p = 2のテイラー展開法の勾配関数は

$$\mathbf{F}_{T2}(t,\mathbf{x};h) = \mathbf{f}(t,\mathbf{x}) + \frac{h}{2}\mathbf{f}^{(1)}(t,\mathbf{x})$$

であるが、次の勾配関数を用いれば、これを2次のオーダーで近似できる.

命題1(ホイン法(2ステップ-ルンゲ・クッタ法1)).f: C²-級,かつ一様リプシッツ連続とすれば,

$$\begin{aligned} \mathbf{F}_{RK2}(t,\mathbf{x};h) &:= \frac{1}{2}(\mathbf{k}_1(t,\mathbf{x}) + \mathbf{k}_2(t,\mathbf{x})) \\ \mathbf{k}_1(t,\mathbf{x}) &:= \mathbf{f}(t,\mathbf{x}) \\ \mathbf{k}_2(t,\mathbf{x}) &:= \mathbf{f}(t+h,\mathbf{x}+h\mathbf{k}_1(t,\mathbf{x})) \end{aligned}$$

と置けば,

$$\sup_{t_0 \le t \le T-h} ||\mathbf{F}_{T2}(t, \mathbf{u}(t); h) - \mathbf{F}_{RK2}(t, \mathbf{u}(t); h)|| \le Ch^2$$

よって

$$\sup_{\leq t \leq T-h} ||\widetilde{\mathbf{F}}(t, \mathbf{u}(t); h) - \mathbf{F}_{RK2}(t, \mathbf{u}(t); h)|| \leq C' h^2$$

上記の勾配関数を用いた1段法をホイン法と言う. 定理から分かるように,ホイン法は2次のテイラー展開法と同じ2次の局所打切り誤差を持つ. また,2次のテイラー展開法と異なり,fの偏導関数を使用しない.

Proof. \mathbf{F}_{RK2} の $t, \mathbf{u}(t)$ での値を考える. $t \mapsto \mathbf{f}(t, \mathbf{u}(t))$ のテイラー展開を用いれば,

$$\begin{aligned} \mathbf{F}_{RK2}(t,\mathbf{u}(t);h) &= \frac{1}{2} \{ \mathbf{f}(t,\mathbf{u}(t)) + \mathbf{f}(t+h,\mathbf{u}(t)+h\mathbf{f}(t,\mathbf{u}(t))) \} \\ &= \frac{1}{2} \mathbf{f}(t,\mathbf{u}(t)) + \frac{1}{2} \mathbf{f}(t+h,\mathbf{u}(t+h)) \\ &\quad -\frac{1}{2} \{ \mathbf{f}(t+h,\mathbf{u}(t+h)) - \mathbf{f}(t+h,\mathbf{u}(t)+h\mathbf{f}(t,\mathbf{u}(t))) \} \\ &= \frac{1}{2} \mathbf{f}(t,\mathbf{u}(t)) + \frac{1}{2} \{ \mathbf{f}(t,\mathbf{u}(t)) + h\mathbf{f}^{(1)}(t,\mathbf{u}(t)) + \frac{h^2}{2} \mathbf{f}^{(2)}(t+\theta h,\mathbf{u}(t+\theta h)) \} \\ &\quad +\frac{1}{2} \{ \mathbf{f}(t+h,\mathbf{u}(t+h)) - \mathbf{f}(t+h,\mathbf{u}(t)+h\mathbf{f}(t,\mathbf{u}(t))) \} \\ &= \mathbf{F}_{T2}(t,\mathbf{u}(t);h) + \frac{h^2}{4} \mathbf{f}^{(2)}(t+\theta h,\mathbf{u}(t+\theta h)) \\ &\quad +\frac{1}{2} \{ \mathbf{f}(t+h,\mathbf{u}(t+h)) - \mathbf{f}(t+h,\mathbf{u}(t)+h\mathbf{f}(t,\mathbf{u}(t))) \} \end{aligned}$$

fの一様リプシッツ連続性と $\mathbf{u}(t)$ のテイラー展開から

 t_0

 $||\mathbf{F}_{RK2}(t,\mathbf{u}(t);h) - \mathbf{F}_{T2}(t,\mathbf{u}(t);h)||$

$$\leq \frac{h^{2}}{4} ||\mathbf{f}^{(2)}(t+\theta h, \mathbf{u}(t+\theta h))|| + \frac{1}{2} ||\mathbf{f}(t+h, \mathbf{u}(t+h)) - \mathbf{f}(t+h, \mathbf{u}(t) + h\mathbf{f}(t, \mathbf{u}(t)))|$$

$$\leq \frac{h^{2}}{4} ||\mathbf{f}^{(2)}(t+\theta h, \mathbf{u}(t+\theta h))|| + \frac{L}{2} ||\mathbf{u}(t+h) - \{\mathbf{u}(t) + h\mathbf{f}(t, \mathbf{u}(t))\}||$$

$$= \frac{h^{2}}{4} \{ ||\mathbf{f}^{(2)}(t+\theta h, \mathbf{u}(t+\theta h))|| + L ||\mathbf{f}^{(1)}(t+\theta' h, \mathbf{u}(t+\theta' h))|| \}$$

fの滑らかさより、あるC > 0がとれて

$$||\mathbf{f}^{(2)}(t+\theta h, \mathbf{u}(t+\theta h))|| + L||\mathbf{f}^{(1)}(t+\theta' h, \mathbf{u}(t+\theta' h))|| \le C$$

 \mathbf{F}_{T2} を2次近似する方法は一意的ではない,例えば次の勾配関数を用いても2次近似が得られる. 次の勾配関数を用いた一段法を改良オイラー法,または、中点法と言う.

命題 2 (改良オイラー法 (2 ステップ-ルンゲ・クッタ法 2)).

$$\begin{aligned} \mathbf{F}_{RK2'}(t,\mathbf{x};h) &:= \mathbf{k}_2(t,\mathbf{x}) \\ \mathbf{k}_1(t,\mathbf{x}) &:= \mathbf{f}(t,\mathbf{x}) \\ \mathbf{k}_2(t,\mathbf{x}) &:= \mathbf{f}(t+\frac{1}{2}h,\mathbf{x}+\frac{1}{2}h\mathbf{k}_1(t,\mathbf{x})) \end{aligned}$$

と置けば,

$$\sup_{t_0 \le t \le T-h} ||\mathbf{F}_{T2}(t, \mathbf{u}(t); h) - \mathbf{F}_{RK2'}(t, \mathbf{u}(t); h)|| \le Ch^2$$

よって

$$\sup_{t_0 \leq t \leq T-h} ||\widetilde{\mathbf{F}}(t, \mathbf{u}(t); h) - \mathbf{F}_{RK2'}(t, \mathbf{u}(t); h)|| \leq C' h^2$$

定義 1. 一般に次の形の勾配関数を用いる一段法を n ステップ-ルンゲ・クッタ法と言う.1

$$\begin{aligned} \mathbf{F}_{RKn}(t,\mathbf{x};h) &:= c_1 \mathbf{k}_1(t,\mathbf{x}) + c_2 \mathbf{k}_2(t,\mathbf{x}) + c_3 \mathbf{k}_3(t,\mathbf{x}) + \dots + c_n \mathbf{k}_n(t,\mathbf{x}) \\ \mathbf{k}_1(t,\mathbf{x}) &:= \mathbf{f}(t,\mathbf{x}) \\ \mathbf{k}_2(t,\mathbf{x}) &:= \mathbf{f}(t + \alpha_1 h, \mathbf{x} + h\beta_{2,1} \mathbf{k}_1(t,\mathbf{x})) \\ \mathbf{k}_3(t,\mathbf{x}) &:= \mathbf{f}(t + \alpha_2 h, \mathbf{x} + h(\beta_{3,1} \mathbf{k}_1(t,\mathbf{x}) + \beta_{3,2} \mathbf{k}_2(t,\mathbf{x}))) \\ &\vdots \\ \mathbf{k}_n(t,\mathbf{x}) &:= \mathbf{f}(t + \alpha_n h, \mathbf{x} + h(\beta_{n,1} \mathbf{k}_1(t,\mathbf{x}) + \dots + \beta_{n,n-1} \mathbf{k}_{n-1}(t,\mathbf{x}))) \end{aligned}$$

2 ステップ-ルンゲ・クッタ法では 2 次の精度が得られたが、一般にはステップ数と精度の次数は一致しない、実際、5 次の精度を得るためには 6 ステップ必要である事が知られている. 次の 4 ステッ プ-ルンゲ・クッタ法がステップ数と精度の次数が同じで済む範囲での最も次数の高い近似となる. 単 に、ルンゲクッタ法といった場合、次の勾配関数を用いた 4 次精度の一段法のことを指す.

命題 3 (ルンゲ・クッタ法 (4 ステップ-ルンゲ・クッタ法)).

$$\begin{aligned} \mathbf{F}_{RK}(t,\mathbf{x};h) &:= \frac{1}{6} (\mathbf{k}_1(t,\mathbf{x};h) + 2\mathbf{k}_2(t,\mathbf{x};h) + 2\mathbf{k}_3(t,\mathbf{x};h) + \mathbf{k}_4(t,\mathbf{x};h))) \\ \mathbf{k}_1(t,\mathbf{x};h) &:= \mathbf{f}(t,\mathbf{x}) \\ \mathbf{k}_2(t,\mathbf{x};h) &:= \mathbf{f}(t + \frac{1}{2}h,\mathbf{x} + \frac{1}{2}h\mathbf{k}_1) \\ \mathbf{k}_3(t,\mathbf{x};h) &:= \mathbf{f}(t + \frac{1}{2}h,\mathbf{x} + \frac{1}{2}h\mathbf{k}_2) \\ \mathbf{k}_4(t,\mathbf{x};h) &:= \mathbf{f}(t + h,\mathbf{x} + h\mathbf{k}_3) \end{aligned}$$

 ${}^1c_i, lpha_i, eta_{i,j}$ は適切に選ばなければならない.

$$\sup_{t_0 \le t \le T-h} ||\mathbf{F}_{T4}(t, \mathbf{u}(t); h) - \mathbf{F}_{RK}(t, \mathbf{u}(t); h)|| \le Ch^4$$

よって

$$\sup_{t_0 \le t \le T-h} ||\widetilde{\mathbf{F}}(t, \mathbf{u}(t); h) - \mathbf{F}_{RK}(t, \mathbf{u}(t); h)|| \le C' h^4$$

例 1 (ばねの運動). $\frac{d\mathbf{u}}{dt}(t) = \mathbf{f}(t, \mathbf{u}(t)), \ \mathbf{u}(t_0) = \mathbf{u}_0$ が次で与えられている;

$$\left\{ \begin{array}{l} \frac{du_1}{dt} = u_2 \\ \frac{du_2}{dt} = -\frac{k}{m}u_1 \end{array} \right. , \qquad \left\{ \begin{array}{l} u_1(t_0) = a \\ u_2(t_0) = 0 \end{array} \right. .$$

 $(u_1$ が質点の位置, u_2 が速度を表している)

$$f_1(\mathbf{u}) = u_2, \qquad f_2(\mathbf{u}) - \frac{k}{m}u_1$$

であるから,

$$\begin{split} k_1^{(1)} &= u_2^{(n)}, \qquad k_2^{(1)} = -\frac{k}{m} u_1^{(n)}, \\ k_1^{(2)} &= u_2^{(n)} + \frac{h}{2} k_2^{(1)}, \qquad k_2^{(2)} = -\frac{k}{m} (u_1^{(n)} + \frac{h}{2} k_1^{(1)}) \\ k_1^{(3)} &= u_2^{(n)} + \frac{h}{2} k_2^{(2)}, \qquad k_2^{(3)} = -\frac{k}{m} (u_1^{(n)} + \frac{h}{2} k_1^{(2)}) \\ k_1^{(4)} &= u_2^{(n)} + h k_2^{(3)}, \qquad k_2^{(4)} = -\frac{k}{m} (u_1^{(n)} + h k_1^{(3)}) \\ \mathbf{F}_{RK}(t_n, \mathbf{u}_n; h) &= \frac{1}{6} (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4) \end{split}$$

よってルンゲ・クッタ法による差分方程式は

$$\mathbf{u}_{n+1} = \mathbf{u}_n + \mathbf{F}_{RK}(t_n, \mathbf{u}_n; h)$$
$$= \mathbf{u}_n + \frac{h}{6}(\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$

となる.