数理ファイナンスセミナー

Math-Fi seminar on 5 Dec.

2024.12.03 Tue up
Date: 5 December (Thu)

Place: West Wing, 6th floor, Colloquium Room and on the Web (zoom)

Time: 16:30–18:40 

Speaker 1: Jorge Ignacio González Cázares (Universidad Nacional Autónoma de México),16:30–17:30 

Title: Markov Chain Monte Carlo: how and why? II

Abstract: We will review classical and widely used Markov Chain Monte Carlo (MCMC) methods. We will begin by reviewing Markov Chain theory and posing the MCMC problem. We motivate the problem from the point of view of stochastic optimisation problems arising in statistics and machine learning. We introduce Metropolis Hastings and Gibbs samplers and show its simplicity using code. We will also hint at its connections with the popular SGD algorithm.


Speaker 2: Andrea Macrina (University College London), 17:40–18:40

Title: Continuous-Time Quantile Processes with Applications in Finance and Insurance

Abstract: We develop a novel approach for the construction of quantile processes governing the stochastic dynamics of quantiles in continuous time. Two classes of quantile diffusions are identified: the first, which we largely focus on, features a dynamic random quantile level that allows for direct interpretation of the resulting quantile process characteristics such as location, scale, skewness, and kurtosis, in terms of the model parameters. The second type are function--valued quantile diffusions and are driven by stochastic parameter processes, which determine the entire quantile function at each point in time. By the proposed construction method, quantile processes are obtained by transforming the marginals of a diffusion process under a composite map consisting of a distribution and a quantile function. Sub-classes of quantile diffusions are explored, with emphasis placed on the Tukey family of models whereby skewness and kurtosis are directly parameterised and thus the composite map is explicable with respect to such statistical behaviours. As an example of an application of quantile diffusions, we show how probability measure distortions, a form of dynamic tilting, can be induced. Though particularly useful in financial mathematics and actuarial science, examples of which are given in this work, measure distortions feature across multiple research areas. For instance, dynamic distributional approximations (statistics), non-parametric and asymptotic analysis (mathematical statistics), dynamic risk measures (econometrics), behavioural economics, decision making (operations research), signal processing (information theory), and not least in general risk theory including applications thereof.

Math-Fi seminar on 21 Nov. (Co-organized as a Quantum Walk Seminar)

2024.11.21 Thu up
日時 :2024年11月21日(木)16:30 〜 18:40

場所 :立命館大学BKCウエストウイング6階数理科学科談話会室&ZOOM

講演者1 : 長谷川武博 先生(滋賀大学)16:30-17:30(質疑応答込み)

講演題目: 「Transcendence of special values of log-type hypergeometric functions attached to Carlitz modules」

講演要旨:
講演者は 2022 年に Carlitz 加群に付随する対数型超幾何関数を定義し、2024年にその関数について代数点での特殊値の代数性・超越性を調べた。 関数を motivic化することで、2024年の結果が進展したので、本講演ではそのことをご紹介します。

 
講演者2 : 篠原雅史 先生(滋賀大学)17:40-18:40(質疑応答込み)

講演題目: 「Erdős distinct distances problem に関係する固有値問題と格子予想」

講演要旨: 
平面上の n 点集合に現れる距離の個数の最小値に関する Erdős(1946) の予想がある。
本講演ではこの予想に関係する格子予想を紹介し、小さいところでの考察を行う。また、この予想に関する幾つかのアプローチについて提案する。

Math-Fi seminar on 7 Nov. (Co-organized as a Quantum Walk Seminar)

2024.11.05 Tue up
日時 :2024年11月7日(木)16:30 〜 18:40

場所 :立命館大学BKCウエストウイング6階数理科学科談話会室&ZOOM
 
講演者1 : 富田昌 先生(明治安田生命)16:30-17:30(質疑応答込み)

講演題目: 「破産理論におけるCramér-Lundberg modelの一般化とその数学的性質」

講演要旨:
破産理論は損害保険数理の一分野で、保険会社の純資産(サープラス)の変動を確率過程としてモデル化し、そのリスクを分析する。本講演では発生頻度の不確実性と保険料の改定に着目して、古典的なCramér-Lundbergモデルの一般化を提案し、その数学的性質について述べる。提案するモデルは、クレーム発生は混合ポアソン過程に従い、保険料率はベイズ推定により設定され、被保険者は複数である。このモデルにおいて、破産確率がクレーム強度の分布や被保険者数に依存しないことを示し、またクレーム強度で条件づけた場合の破産確率の単調性について述べる。本講演の内容は高岡浩一郎氏(中央大)、石坂元一氏(中央大)との共同研究に基づく。
 

講演者2: 小澤知己 先生(東北大学) 17:40-18:40(質疑応答込み)

講演題目: 「トポロジカル量子ウォーク:平均カイラル変位を例として」

講演要旨:
物性物理学でトポロジカル絶縁体という物質が発見された。これは、電子状態が適切な意味でトポロジカルに非自明になっているような物質であり、物質の表面・端において観測可能な現象につながることが知られている。物質の電子状態はハミルトニアンと呼ばれる自己共役演算子の固有ベクトルの性質と密接に関係する。つまり、適切な意味でハミルトニアンのトポロジーが非自明であるような物質がトポロジカル絶縁体である。電子状態の時間発展はハミルトニアンを含む微分方程式であるシュレディンガー方程式で記述されるが、電子状態の時間発展を量子ウォークととらえるとき、トポロジカルに非自明なハミルトニアンに従う時間発展に対応する量子ウォークがトポロジカル量子ウォークである。本講演ではトポロジカル絶縁体の説明から始めてトポロジカル量子ウォークの基礎的な部分を紹介し、トポロジカル量子ウォーク由来の非自明な現象の例として平均カイラル変位(mean chiral displacement)を解説することを目標とする。講演者は物理学者であり、トポロジカル絶縁体の専門家ではあるが量子ウォークの、特に数学的な側面は専門としていない。講演を通じて異なる分野の科学者による有意義な交流ができることを期待している。

Math-Fi seminar on 31 Oct.

2024.10.29 Tue up
Date: 31 October (Thu)

Place: West Wing, 6th floor, Colloquium Room and on the Web (zoom)

Time: 16:30–18:00

Speaker: Taiho Wang (Baruch College) 

Title: Concentrated Liquidity Provision Market Making

Abstract: 
In this talk, we first review the concentrated liquidity provision amendment to the constant product market making (CPMM), a commonly employed trading protocol populated in automated market making. Unlike the plain CPMM, the feature of concentrated liquidity provision enables liquidity providers (LPs) to specify customized price ranges within which they will provide liquidty for the purpose of maximizing the transaction fee payments collected from the liquidity takers. Should the pool price leave the prespecified price range, transaction fee payments to the LP are suspended until the pool price returns to the price range, if the LP has not withdrawn his liquidity. This new feature introduces a set of new coordinates, the price-liquidity coordinates, under which liquidty is regarded as a function of pool price. This function is referred to as the liqudity profile or the liquidity distribution. We exposit the evolutions of the following quantities: the liquidity profile, the pool reserves, the pool price, as well as payments of transaction fees under continuous liquidity provisions and tradings in this framework. We touch upon the problem of optimal liquidity provision in these circumstances. The talk is based on joint works in progress with Jimmy Risk, Shen-Ning Tung, and Wei-Cheng Wang.

Math-Fi seminar on 24 Oct. (Co-organized as a Quantum Walk Seminar)

2024.10.23 Wed up
日時 :2024年10月24日(木)16:30 〜 18:40

場所 :立命館大学BKCウエストウイング6階数理科学科談話会室&ZOOM

講演者1:鹿野豊 先生(筑波大学)
 
講演題目:「量子計算機システム構築と数理モデルの意義」

講演要旨:
「昨今、クラウド上の量子計算機を用いて、量子計算機を所有しなくても何かしらのものを計算できるようになってきた。ただ、量子計算機が世界中でありふれたように使われている時代でもなく、どのような計算機になりそうなのか?ということはあまり理解されていないことのように思う。そこで、量子計算機を計算機システムの一部として捉えるためにも、どのような立ち位置の計算機となりそうなのか?そして、どういうことが現状問題なのか?ということについて、講演者の知りうる範囲で解説を行う。その上で、数理モデル(特に量子ウォーク)がどのように量子計算機システムを構築する上で重要なのかということについて議論を行う。」
 

講演者 2:西郷甲矢人 先生(長浜バイオ大学)
 
講演題目:「圏構造と非可換確率論:量子ウォークの一般理論に向けて」

講演要旨:
「〇〇とは何か?」という問いが常に実り豊かというわけではない。しかし、様々な面白い具体例や類に関する研究が一定の期間その名のもとに行われてきた分野においては、そうした問いにしばしば大きな意味が出てくる。そこで、「量子ウォークとは何か?」と問うことにしよう。おそらく誰もが認めるであろうことは、それが(離散もしくは連続な、一般化された意味での)「時空」の上での「量子的」な動力学であるということである。本講演では、「時空」とは「圏」であり、「量子的」とは「非可換確率的」であるという立場から、圏上のたたみ込み代数である「圏代数」とその上の線型汎関数としての「状態」の概念を導入し、その動力学としての量子ウォークの概念を、一般の「ダガー圏」上において定式化することを提案する。かくも多様に発展している量子ウォークについての一般論の枠組みを提案することで、量子ウォーク研究やその応用の展開に役立つ「意識の拡大」を試みたい。

Math-Fi seminar on 10 Oct. (Co-organized as a Quantum Walk Seminar)

2024.10.08 Tue up
日時:2024年10月10日(木)16:30 〜 18:40

場所 :立命館大学BKCウエストウイング6階数理科学科談話会室&ZOOM

講演者1:高橋 佐良人 先生(テンソル・コンサルティング株式会社)

講演題目:量子ウォークとサポートの関係ーConnecting the Dotsー

講演要旨:
量子ウォークは,ランダムウォークの量子版として紹介されることが多いが,その挙動はランダムウォークとは大きく異なる。ランダムウォークでは確認できない量子ウォークの主な特徴として,線形的拡散と局在化(十分な時間が経過しても出発点に留まる性質) がよく知られているが,量子ウォークでは,有限なサポートが存在することも,大きな違いの一つとして認識されている。
本講演では,量子ウォークにおけるサポート,赤堀研と今野研の関係などを,「Connecting the Dots」というキーワードをもとに説明することを試みる。
 

講演者2:松岡 雷士 先生(広島工業大学)


講演題目:量子ウォーク迷路解法の理論と実装

講演要旨:
吸収ノードのある量子ウォークを利用して、迷路状ネットワークの最短経路を導出する手法について紹介する。
スタートとゴールのノードにセルフループを設置してグローバーウォークを時間発展させると、迷路内のスタートとゴールをつなぐルート上のノードにのみ振幅が残留し、最短経路が浮かび上がる。
本講演では手法の詳細と瀬川・大野による数学的な記述について紹介しつつ、本アルゴリズムを古典計算機上で高速実装するための経過について紹介する。

Math-Fi seminar on 3 Oct.

2024.10.03 Thu up
Date: 3 October (Thu)

Place: West Wing, 6th floor, Colloquium Room and on the Web (zoom)

Time: 16:30–18:00

Speaker: Taiho Wang (Baruch College) 

Title: Relative entropy-regularized robust optimal order execution under transient impact

Abstract: 
In this talk, we cast optimal liquidation under linear temporary and transient price impact as a relative entropy-regularized robust optimal control problem. The problem is formulated as to maximize a reward-risk functional associated with the order execution agent’s profit-and-loss of trading and the execution risk taking into account market’s liquidity and uncertainty over a class of absolutely continuous strategies. The problem is made into an entropy-regularized stochastic differential game and is solved by adopting the principle of dynamic programming, yielding that the value function of the differential game satisfies an entropy-regularized Hamilton-Jacobi-Isaacs (rHJI) equation. Under the assumption of aggregate exponential transient impact and Gaussian prior, the rHJI equation reduces to a matrix Riccati differential equation. Further imposing constancy of the corresponding coefficients, the matrix Riccati differential equation can be linearized, resulting in analytical expressions for optimal strategy and trajectory as well as the posterior distribution of market activity. The talk is based on a joint work with Xue Cheng and Meng Wang.

Math-Fi seminar on 26 Sep. (Co-organized as a Quantum Walk Seminar)

2024.09.25 Wed up
日時 :2024年9月26日(木)16:30 〜 18:40

場所 :立命館大学BKCウエストウイング6階数理科学科談話会室&ZOOM

講演者1:久保田匠 先生(愛知教育大学)

講演題目:Grover walk の周期性に関する最近の研究

講演要旨:
量子ウォークはランダムウォークの量子版として導入された数理モデルであり、確率論の枠を超えてグラフ理論、関数解析学、量子情報理論など幅広い分野と密接に関連して研究されている。周期性は量子状態がいくらかの時刻を経て初期状態に戻るという現象であり、特定のグラフにおいてのみ発生する珍しい現象である。本講演では、まず量子について物理的な背景を簡単に説明したうえで離散時間の1次元量子ウォークを導入する。次に、グラフ上の量子ウォークでは定番の Grover walk と、その周期性に関する基本的な結果を紹介する。最後に Grover walk の周期性に関する最近の研究成果や未解決問題を紹介する。



講演者2:渡邉 扇之介 先生(福知山公立大大学)

講演題目:高階多値多近傍セルオートマトンとその応用

講演要旨:
セルオートマトンとは1次元格子状にあるセルが離散値の状態をもち,ある規則に従って時間発展する離散力学系である. セルオートマトンは様々な現象を記述できるといわれているが,計算機の限界から多くの研究は「低い階層」のセルオートマトンを用いた実験的な研究であり,演繹的な研究も離散数学の道具が少ないため進んではいない. 本講演では,「高い階層」のセルオートマトンに対する実験的・演繹的アプローチを試みる. また,複数のセルオートマトンの確率的な組合せによって得られる確率モデルについても紹介する.

Math-Fi seminar on 19 Sep.

2024.09.18 Wed up
Date: 19th September (Thu)

Place: West Wing, 6th floor, Colloquium Room and on the Web (zoom)

Time: 16:30–18:00

Speaker: Taiho Wang (Baruch College) 

Title:  Growth rate of wealth in G3Ms 

Abstract:
Geometric mean market makers (G3Ms), such as Uniswap and Balancer, represent a widely used class of automated market makers (AMMs). These G3Ms are characterized by the following rule: the reserves of the AMM must maintain the same (weighted) geometric mean before and after each trade. In this talk, we investigate the effects of trading fees on liquidity providers’ (LP) profitability in a G3M, as well as the adverse selection faced by LPs due to arbitrage activities involving a reference market. Our work expands previous models to G3Ms, integrating both transaction fees and continuous-time arbitrage into the analysis. Within this context, we analyze G3M dynamics, characterized by stochastic storage processes, and calculate the growth rate of LP wealth. We extend earlier results on constant product market maker, commonly referred to as Uniswap v2, as a special case. The talk is based on a joint work with Cheuk Yin Lee and Shen-Ning Tung.

Math-Fi seminar on 5 Sep

2024.08.30 Fri up
Date: 5th September (Thu)
Place: West Wing, 6th floor, Colloquium Room and on the Web (zoom)
Time: 16:30–18:30

Speaker 1: Long Ngo Hoang (Laboratory of Applied Mathematics)
 
Title: Well-posedness, regularity of solutions and the $\theta$-Euler-Maruyama scheme for  stochastic Volterra integral equations with general singular kernels and jumps
 
Abstract: 
In this talk, we consider a class of stochastic Volterra integral equations with general singular kernels, driven by a Brownian motion and a pure jump L\’evy process. We first show that these equations have a unique strong solution under certain regular conditions on their coefficients. Furthermore, the solutions of this equation depend continuously on the initial value and on the kernels $k$, $k_B$, and $k_Z$. We will then show the regularity of solutions for these equations. Finally, we propose a $\theta$-Euler-Maruyama approximation scheme for these equations and demonstrate its convergence at a certain rate in the $L^2$-norm. 
This is a joint work with PHAN Thi Huong (Le Quy Don Technique University) and Peter Kloeden (Universit\”{a}t T\”{u}bingen)


Speaker 2: Tran Ngoc Khue (Hanoi University of Science and Technology) 

Title:On the infinite time horizon approximation for Lévy-driven McKean-Vlasov SDEs with non-globally Lipschitz continuous and super-linearly growth drift and diffusion coefficients

Abstract:  
This talk presents the study of the numerical approximation for McKean-Vlasov stochastic differential equations driven by Lévy processes. We propose a tamed-adaptive Euler-Maruyama scheme and consider its strong convergence in both finite and infinite time horizons when applying for some classes of Lévy-driven McKean-Vlasov stochastic differential equations with non-globally Lipschitz continuous and super-linearly growth drift and diffusion coefficients. This is a joint work with Hoang-Long Ngo, Duc-Trong Luong and Trung-Thuy Kieu.