News&Events

Math-Fi seminar on 5 Sep

2024.08.30 Fri up
Date: 5th September (Thu)
Place: West Wing, 6th floor, Colloquium Room and on the Web (zoom)
Time: 16:30–18:30

Speaker 1: Long Ngo Hoang (Laboratory of Applied Mathematics)
 
Title: Well-posedness, regularity of solutions and the $\theta$-Euler-Maruyama scheme for  stochastic Volterra integral equations with general singular kernels and jumps
 
Abstract: 
In this talk, we consider a class of stochastic Volterra integral equations with general singular kernels, driven by a Brownian motion and a pure jump L\’evy process. We first show that these equations have a unique strong solution under certain regular conditions on their coefficients. Furthermore, the solutions of this equation depend continuously on the initial value and on the kernels $k$, $k_B$, and $k_Z$. We will then show the regularity of solutions for these equations. Finally, we propose a $\theta$-Euler-Maruyama approximation scheme for these equations and demonstrate its convergence at a certain rate in the $L^2$-norm. 
This is a joint work with PHAN Thi Huong (Le Quy Don Technique University) and Peter Kloeden (Universit\”{a}t T\”{u}bingen)


Speaker 2: Tran Ngoc Khue (Hanoi University of Science and Technology) 

Title:On the infinite time horizon approximation for Lévy-driven McKean-Vlasov SDEs with non-globally Lipschitz continuous and super-linearly growth drift and diffusion coefficients

Abstract:  
This talk presents the study of the numerical approximation for McKean-Vlasov stochastic differential equations driven by Lévy processes. We propose a tamed-adaptive Euler-Maruyama scheme and consider its strong convergence in both finite and infinite time horizons when applying for some classes of Lévy-driven McKean-Vlasov stochastic differential equations with non-globally Lipschitz continuous and super-linearly growth drift and diffusion coefficients. This is a joint work with Hoang-Long Ngo, Duc-Trong Luong and Trung-Thuy Kieu.
TRAN Abstract: This talk presents the study of the numerical approximation for McKean-Vlasov stochastic differential equations driven by Lévy processes. We propose a tamed-adaptive Euler-Maruyama scheme and consider its strong convergence in both finite and infinite time horizons when applying for some classes of Lévy-driven McKean-Vlasov stochastic differential equations with non-globally Lipschitz continuous and super-linearly growth drift and diffusion coefficients. This is a joint work with Hoang-Long Ngo, Duc-Trong Luong and Trung-Thuy Kieu.


Math-Fi seminar on 29 August

2024.08.22 Thu up
Date: 29th August (Thu)
Place: West Wing, 6th floor, Colloquium Room and on the Web (zoom)
Time: 16:30–18:00
 
Speaker: Noriyoshi Sakuma (Nogoya City University)
 
Title: Fluctuations of eigenvalues of a polynomial on Haar unitary and finite rank matrices
 
Abstract:
In this talk, I will explain how to calculates the fluctuations of eigenvalues of polynomials on large Haar unitaries cut by finite rank deterministic matrices. When the eigenvalues are all simple, we can give a complete algorithm for computing the fluctuations.
 

Prob & Math-Fi seminar on 25 July

2024.07.24 Wed up
  • Date: 25 July (Thu.)
  • Place: W.W. 6th-floor, Colloquium Room and on the Web (Zoom)
  • Time: 15:30 – 18:30
  •  
  • Speaker 1: Daiki Tagami (Oxford University), 15:30-17:00
  • Title 1: tstrait: a quantitative trait simulator for ancestral recombination graphs
  • Abstract 1:
  • Ancestral recombination graphs (ARGs) encode the ensemble of correlated genealogical trees arising from recombination in a compact and efficient structure, and are of fundamental importance in population and statistical genetics. Recent breakthroughs have made it possible to simulate and infer ARGs at biobank scale, and there is now intense interest in using ARG-based methods across a broad range of applications, particularly in genome-wide association studies (GWAS). Sophisticated methods exist to simulate ARGs using population genetics models, but there is currently no software to simulate quantitative traits directly from these ARGs. To apply existing quantitative trait simulators users must export genotype data, losing important information about ancestral processes and producing prohibitively large files when applied to the biobank-scale datasets currently of interest in GWAS. We present tstrait, an open-source Python library to simulate quantitative traits on ARGs, and show how this user-friendly software can quickly simulate phenotypes for biobank-scale datasets on a laptop computer.
 
  • Speaker 2: Hau-Tieng Wu (NYU Courant Institute of Mathematical Sciences), 17:00-18:30
  • Title 2: Statistical Inference for Nonstationary Time Series via Phase-Driven Time-Frequency Analysis
  • Abstract 2:
  • Real-world time series are typically nonstationary and consist of multiple oscillatory components exhibiting complex statistical characteristics such as time-varying amplitude, frequency, and non-sinusoidal patterns. Signal quality is often compromised by intricate noise or artifacts. I will discuss recent advancements in addressing such time series using phase-driven nonlinear time-frequency analysis, highlighting recent statistical inference outcomes. Additionally, biomedical applications and unresolved mathematical challenges will be illustrated

Math-Fi seminar on 18 Jul. (Co-organized as a Quantum Walk Seminar)

2024.07.13 Sat up
  • 日時 :2024年7月18日(木)16:30 〜 18:00  
  • 場所 :立命館大学BKCウエストウイング6階数理科学科談話会室&ZOOM
  • 講演者 : 和田 和幸 氏(北海道教育大学 旭川校)
  • 講演題目   : 量子ウォークの離散固有値に付随する固有関数の指数減衰性
  • 講演要旨  :
 量子ウォークは古典ランダムウォークの量子力学版と称される数理モデルである.
 量子ウォークの固有値・固有関数を調べる事は重要である.
         シュレディンガー作用素の文脈では,無限遠方への指数減衰性は固有関数が持つ典型的な特徴の1つ           であると考えられている.
         1次元量子ウォークでは転送行列を用いる事で,直接固有ベクトルの無限遠方での挙動を見る事がで           きる(黄海-齋藤, 2021, QIPなど).
         講演では関数解析の視点から,いくつかの仮定を満たせば固有関数が無限遠方で指数減衰する事を紹           介したい.
         この結果は,布田-船川-鈴木による多次元量子ウォークの結果(2017, QIP)に応用可能である.
         全体を通して1次元を例に取り,平易な言葉で解説を試みたい.
 

Math-Fi seminar on 11 July

2024.07.09 Tue up
  • Date: 11 July (Thu.)
  • Place: W.W. 6th-floor, Colloquium Room and on the Web (Zoom)
  • Time: 16:30 – 18:00

  • Speaker : Anna Aksamit(Usydney)    
  • Title: Introduction to robust finance Ⅲ
  • Abstract: 
  •  In this short course we present robust approach to pricing and hedging. The aim is to find bounds on the prices of exotic derivatives in terms of the (market) prices of call options. We do not make any explicit assumptions about the dynamics of the price process of the underlying asset. We deduct information about the distribution of asset prices from the call prices. The obtained bounds are robust with respect to model assumptions. We will present pricing and hedging of some specific payoffs, as well as, duality for more general class of payoffs

Math-Fi seminar on 4 July

2024.07.04 Thu up
  • Date: 4 July (Thu.)
  • Place: W.W. 6th-floor, Colloquium Room and on the Web (Zoom)
  • Time: 16:30 – 18:00

  • Speaker : Anna Aksamit(Usydney)   
  • Title: Introduction to robust finance Ⅱ
  • Abstract: 
 In this short course we present robust approach to pricing and hedging. The aim is to find bounds on the prices of exotic derivatives in terms of the (market) prices of call options. We do not make any explicit assumptions about the dynamics of the price process of the underlying asset. We deduct information about the distribution of asset prices from the call prices. The obtained bounds are robust with respect to model assumptions. We will present pricing and hedging of some specific payoffs, as well as, duality for more general class of payoffs
 

Math-Fi seminar on 20 Jun. (Co-organized as a Quantum Walk Seminar)

2024.06.19 Wed up
  • Date: 20 Jun. (Thu.)
  • Place: W.W. 6th-floor, Colloquium Room and on the Web (Zoom)
  • Time: 16:30 – 18:30
  • Speaker: Tatsuya Tsurii (Tokyo University of Information Sciences)
  • Title: 発展行列から得られる群構造を用いたGrover walk の周期性に関する研究
  • Abstract : 
量子ウォークの周期に関する問題は, 様々な場合において考察がなされている. それらの結果の一つとして, $n$が$1$より大きい正の整数のとき, 頂点数$n$のループ付き完全グラフ上のGrover Walk は周期$2n$を持つことが知られている. このことを証明する際に用いた方法は, 発展行列$U$の固有値に着目する方法であった. 本講演では, 発展行列$U$から得られる群構造に着目して, 頂点数$n$のループ付き完全グラフ上の Grover Walk の周期を求める方法について述べる.その後, すでに知られている結果に対して, 上記の方法がどの程度有用であるかを考察する.
 

Math-Fi seminar on 13 Jun.

2024.06.12 Wed up
  • Date: 13 Jun. (Thu.)
  • Place: W.W. 6th-floor, Colloquium Room and on the Web (Zoom)
  • Time: 16:30 – 17:30
  • Speaker: Akihiro Tanaka(Sumitomo Mitsui Banking Corporation)
  • Title: Weak approximation for a Black-Scholes type regime switching model
  • Abstract :
レジームスイッチ型のブラックショールズモデルに対するヨーロピアンタイプのオプションのモンテカルロシミュレーション方法を提案する. プロセスが分割区間の境界点から離れる場合にはオイラースキームを、プロセスが分割区間の境界点付近にある場合にはスキューブラウン運動を組み合わせた近似方法を提案し、弱近似誤差が指数関数的に小さくなることを示し、いくつかのシミュレーション結果を示す。

Math-Fi seminar on 6 Jun (Co-organized as a Quantum Walk Seminar)

2024.06.05 Wed up
 
  • Date: 6 Jun. (Thu.)
  • Place: W.W. 6th-floor, Colloquium Room and on the Web (Zoom)
  • Time: 16:30 – 18:30
  • Speaker1: Takuya MACHIDA(Nihon University)16:30~17:30
  • Title1:量子ウォークの長時間極限分布からわかる量子ウォークの奇妙な性質
  • Abstract1 :
ランダムウォークの量子類似物である量子ウォークには、離散時間モデルと連続時間モデルがある。物理学的には、離散時間モデルはディラック方程式の時空間離散版、連続時間モデルはシュレディンガー方程式の空間離散版である。量子ウォークは、それ自体を量子アルゴリズムとみなすことができ、量子コンピュータの基礎理論構築に応用されている。
数学における量子ウォークの研究目標の1つは、長時間極限定理の導出である。長時間時間発展後のウォーカーの空間分布を漸近的に記述する長時間極限分布は、量子ウォークの性質を明らかにするために必要とされている。本講演では、1次元量子ウォークの極限分布を通じて、量子ウォークの興味深い性質を紹介する。講演内容は、Machida and Konno [1]、Grunbaum and Machida [2]、Machida [3]に基づく。
 
[1] Takuya Machida, Norio Konno, “Limit theorem for a time-dependent coined quantum walk on the line”, F. Peper et al. (Eds.): IWNC 2009, Proceedings in Information and Communications Technology, Vol.2, pp.226-235 (2010).
 
[2] F. Alberto Grunbaum, Takuya Machida, “A limit theorem for a 3-period time-dependent quantum walk”, Quantum Information and Computation, Vol.15 No.1&2, pp.50-60 (2015).
 
[3] Takuya Machida, “Limit distribution of a continuous-time quantum walk with a spatially 2-periodic Hamiltonian”, Quantum Information Processing,Vol.22, 332 (2023).
 
  • Speaker2: Akito SUZUKI(Komatsu University)17:30~18:30
  • Title2:Dynamics of Non-Unitary Quantum Walks
  • Abstract2 :
In this presentation, we define the dynamics of quantum walks interacting with the environment as a quantum statistical mechanical model and examine its dynamics.

 

Math-Fi seminar on 23 May (Co-organized as a Quantum Walk Seminar)

2024.05.21 Tue up
  • Date: 23 May (Thu.)
  • Place: W.W. 6th-floor, Colloquium Room and on the Web (Zoom)
  • Time: 16:30 – 18:00
  • Speaker:Daiju Funakawa(Hokkai-Gakuen University)
  • Title:量子ウォークにおけるスペクトル写像定理とこれを用いた展望
  • Abstract : 量子ウォークはデバイスにレーザーを透過・偏極させることで実装される数理モデルであり,量子探索アルゴリズムやトポロジカル絶縁体などへの応用が期待されている。量子ウォークの記述する時間発展作用素の性質を調べる際,そのスペクトルを計算し関数解析学の観点から研究することができる。さて,スペクトル写像定理は量子ウォークのスペクトルとランダムウォークとユニタリ同値なdiscriminant作用素のスペクトルとの対応を述べた定理であり,これを用いてSplit-Step量子ウォークなどのスペクトルも調べられている。このスペクトル写像定理は量子ウォークが閉鎖系でカイラル対称な場合,2019年に一般論として瀬川らによって証明されている。さらに2023年には,浅原らによって一部の開放系量子ウォークのための拡張が行われた。本講演ではこれらの定理や応用などを紹介しつつ,更なる拡張についてお話する。