- Date : 21 Oct. (Thu.)
- Place: W.W. 6th-floor, Colloquium Room
- Time : 16:30-18:00
- Speaker: Naotaka Kajino(Kobe University)
- Title: 多重Dynkin-Hunt公式による拡散過程の熱核の上方評価とLiouville Brown運動への応用
日時: 6月23日(木)
場所: 立命館大学 BKC ウエストウイング6階 談話会室
時間: 17:30 — 18:30
講演者: Mouez Dimassi 氏(ボルドー大学・立命館大学)
講演題目: Semiclassical Trace Formula for Systems of h-Pseudodifferential Operators and Application to the Spectral Shift Function
アブストラクト: In this talk we give a microlocal trace formula for a system of h-pseudodiifferential operators.
We apply this trace formula to the asymptotic of the counting function of the number of eigenvalues and to the asymptotics of the spectral shift function of the semiclassical Schrödinger operator with matrix valued potential.
Our proofs are based on a time independent method.
日時: 5月27日(金)
場所: 立命館大学 BKC フォレストハウス1階 F105
時間: 16:30 — 18:00
講演者: 尾張 圭太 氏(立命館大学), 多羅間 大輔 氏(立命館大学)
1. 16:30-17:10
講演者: 尾張 圭太 氏(立命館大学)
講演題目: On Convex Functions on Orlicz Spaces with $\Delta_2$-Conjugates
アブストラクト: We show that in an Orlicz space \(L^\Phi\) with the conjugate Young function \(\Psi\) being \(\Delta_2\) (so \(L^\Phi\) is the dual of \(L^\Psi\)), a proper convex function has a \(\langle L^\Phi,L^\Psi\rangle\)-dual representation iff it is order lower semicontinuous; more precisely, a convex set \(C\subset L^\Phi\) is \(\sigma(L^\Phi,L^\Psi)\)-closed iff for each order interval \([-\eta,\eta]=\{\xi:-\eta\leq \xi\leq \eta\}\) (\(0\leq \eta\in L^\Phi\)), the intersection \(C\cap [-\eta,\eta]\) is closed in \(L^0\). The result is based on the following technical lemma: for any norm bounded sequence \((\xi_n)_n\) in \(L^\Phi\) which converges in probability to \(0\), there exist forward convex combinations \(\zeta_n\in \mathrm{conv}(\xi_n,\xi_{n+1},…)\) as well as an element \(\eta\in L^\Phi_+\) such that \(\zeta_n\rightarrow 0\) and \(|\zeta_n|\leq \eta\). We show also that a finite-valued convex function on \(L^\Phi\) is \(\tau(L^\Phi,L^\Psi)\)-continuous iff it is sequentially \(\tau(L^\Phi,L^\Psi)\)-continuous on order intervals, and the condition is equivalent to the order continuity of the function.
This is a Joint work with Freddy Delbaen (ETH Zürich and Univ. Zürich).