ニュース&イベント

Math-Fi seminar on 22 Dec.

2017.12.21 Thu up
  • Date: 22 Dec. (Fri.)
  • Place: W.W. 6th-floor, Colloquium Room
  • Time: 16:30-18:00
  • Speaker: Tai-Ho Wang
  • Title: Works in progress related to quantitative finance
  • Abstract: In this talk, I will introduce the projects that I am currently working on and their possible extensions. The first concerns the pricing of an exotic option called target volatility option in the fractional SABR model. Secondly, we concern ourselves in an equilibrium model on asymmetric information and insider trading in continuous time taking into account adverse selection and inventory cost. Lastly, we propose an approximate maximum likelihood estimator for the drift term of a  fractional Brownian motion with drift. 

2018年3月26日(月)~28日(水) ワークショップ

2017.11.29 Wed up

Noncommutative Geometry and K-theory at Rits
     -The Fourth China-Japan Conference-


Dates : March 26 (Monday) — 28 (Wednesday), 2018 
Conference Venue : Ritsumeikan University, Biwako-Kusatsu Campus (BKC)
                                    Access Map


Organizing Committee : 
       Toshikazu Natsume, Ritsumeikan University, Co-chair
       Hiroyuki Osaka, Ritsumeikan University, Co-chair
       Tsuyoshi Kato, Kyoto University
       Yasuyuki Kawahigashi, University of Tokyo
       Hitoshi Moriyoshi, Nagoya University

Invited Speakers
 :
       
Tomohiro Fukaya, Tokyo Metropolitan University 
       Yoshiyasu Fukumoto, East China Normal University
       Goroh Ishiki, Tsukuba University
       Yosuke Kubota, RIKEN
       Hongzhi Liu, Shanghai Center for Mathematical Sciences, Fudan University
       Raphael Ponge, Seoul National University
       Naoya Suzuki, National Institute of Technology, Akita College
       Doman Takata, Kyoto University
       Kai Wang, Fudan University
       Qin Wang, East China Normal University
       Kentaroh Yoshida, Kyoto University
       Yang Zhang, University of Manitoba
       Dapeng Zhou, East China Normal University  


For information : Toshikazu Natsume (tnatsume@jcom.zaq.ne.jp)     

Program  Poster  

数理科学科談話会 (2017/11/30)

2017.11.23 Thu up
<<立命館大学数理科学科談話会>>

日時: 2017年11月30日(木)16:30~18:45

場所: 立命館大学びわこ・くさつキャンパス(BKC)
            ウェストウィング6階談話会室

講演① 16:30-17:30
タイトル: 局所的にヘルダー連続な拡散係数を持つカントール確率微分方程式について

講演者: 土屋 貴裕 (会津大学)

アブストラクト:
有界で滑らかな拡散係数が退化する線形偏微分方程式の解は Hailer et al. AOP 2015 で指摘されたように,局所的にヘルダー連続ですならなく古典的な解の概念では捉えきれない,ラフティング効果という特異な現象を有することがある.これは応用にも本質的な影響を与えるもので,実際にオイラー丸山近似が多項式オーダーでは収束しない.さらに数理ファイナンスで用いられる CIR や Heston タイプもラフティング効果を有しており,実務に耐えうる時間内でリスク評価を終えることが難しいことがあると指摘されている (Hefter and Jentzen Arxiv 2017).したがって純粋学問,応用の観点からも研究対象として重要である.

本談話会では 一次元のドリフトなし non-Lipschitz 拡散係数をもつ確率微分方程式の解の安定性とその応用について述べる.

具体的な例として $\lambda$-Cantor 関数を考える.これは中央部分を $\lambda \in (0,1)$だけ取り除いて逐次的に構成できるCantor集合に対する関数で $\mathrm{H}_{\lambda}$-Holder連続な関数になる,$\mathrm{H}_{\lambda}\in (0,1)$.
それを拡散係数にもつ確率微分方程式を考えることで解の安定性問題が考えられる.今回示す必要十分条件の命題を踏まえつつ,退化を取り除いた方向からのアプローチの仕方で上からの評価がだいぶ様相が異なることを示す.

最後に偏微分方程式における一般的な仮定を満たさないが弱解を持つ Fokker-Planck-Kolmogorov 等式への応用について述べる.
さらに最近のStefano AAP 2011 の結果を援用して滑らかな基本解の存在と一意性を導き出せることを紹介する.

講演② 17:45-18:45
タイトル: A gauge action on non-commutative solitons

講演者: Hyun Ho Lee (University of Ulsan)

アブストラクト:
Taking formalism from Physics, we can define non-commutative harmonic maps between $C\sp*$-algebras. If we consider maps from a non-commutative torus to a two-point space or $*$-homomorphisms from two dimensional complex plane to an irrational rotation $C^*$-algebra, harmonic maps are smooth projections satisfying a nonlinear non-commutative elliptic PDE. In this talk, we present a constructive method to find so called solitons which comes from the Schwarz space of $\mathbb{R}$ and show that there is a large class of solitons which is linked to Signal analysis or Gabor analysis. Moreover, we introduce a gauge action on such solitons and quantify the condition how to gauge a Gaussian soliton to another Gabor frame.

Math-Fi seminar on 23 Nov.

2017.11.21 Tue up
  • Date: 23 Nov. (Thu.)
  • Place: W.W. 6th-floor, Colloquium Room
  • Time: 16:30-18:00
  • Speaker: Masanori Koyama (Ritsumeikan university)
  • Title: TBA
 

数理科学科談話会 (2017/11/16)

2017.11.08 Wed up
<<談話会>>
日時: 2017年11月16日(木) 16:30~17:30

場所: 立命館大学びわこ・くさつキャンパス(BKC)
            ウェストウィング6階談話会室

タイトル: The geometry of a phantom circle

講演者: 夏目利一 (名古屋工業大学名誉教授)

アブストラクト:
This is an attempt to apply noncommutative geometry to study “singular spaces” like fractals.
In the first half I will explain what is noncommutative geometry, what is the philosophy behind it, what are basic tools.
In the second half I will present recent work with H. Moriyoshi of Nagoya University. The algebra of continuous functions on the Cantor ternary set contains the algebra A of continuous functions on the circle. The algebra A is called a phantom circle. I will explain why this is called a phantom circle. Noncommutative geometry is applied to detect this phantom hiding behind the Cantor set.

Math-Fi seminar on 7 Nov.

2017.11.06 Mon up
  • Date: 7 Nov. (Tue.)
  • Place: W.W. 6th-floor, Colloquium Room
  • Time: 16:30-18:00
  • Speaker: Yong Hyun Shin (Seoul)
  • Title: Consumption and Portfolio Selection with Necessities and Luxuries
 

Math-Fi seminar on 2 Nov.

2017.10.31 Tue up
  • Date: 2 Nov.(Thu.)
  • Place: W.W. 6th-floor, Colloquium Room
  • Time: 16:30-18:00
  • Speaker: Kanji Inui (Kyoto university)
  • Title: Discontinuity of energy density functions on Sierpinski gasket
  • Abstract: N-dimensional Sierpinski gasket is one of most important fractal. we consider energy density functions on it. Bell, Ho and Strichartz proved that this functions are discontinuous at every point if N = 2 [1]. I will talk about discontinuity of energy density functions on N-dimensional Sierpinski gasket.  
[1] R. Bell, C. W. Ho and R. S. Strichartz, Energy measures of harmonic functions on the Sierpiński gasket, Indiana Univ. Math. J. 63 (2014), 831–868
 

2017年10月20日(金) 立命館大学幾何学セミナー

2017.10.08 Sun up
日時: 2017年10月20日(金) 16:00~17:30
場所: 立命館大学びわこ・くさつキャンパス(BKC) ウェストウィング7階 数学第1研究室

タイトル: 4次元可微分多様体上のニュートラル計量 (++--)の存在条件および擬Riemann多様体上のGoldberg予想の反例について

講演者: 松下 泰雄 (大阪市立大学数学研究所)

アブストラクト:
不定値計量をもつ擬Riemann多様体に関して,2つのトピックスを紹介する.
1.向き付け可能なコンパクト4次元可微分多様体上のニュートラル計量
(++--)の存在条件は,向き付け可能な2次元平面場の存在条件および
2種類の概複素構造の存在条件と同値である.1958年に Hirzebruch-Hopfは,
4次元多様体の交点形式の分類には言及せずに,2次元平面場の存在の必要
十分条件を得ていた.交点形式の分類は,4次元位相多様体についてはFreedman
によって,4次元可微分多様体についてはDonaldson によって得られて,
二人揃って1986年のフィールズ賞に輝いた.その交点形式の分類および,
Hirzebruch-Hopfの2次元平面場の存在定理に基づき,また4次元回転群 SO(4)
の部分群を精査することによって,それが2種類の概複素構造の存在条件と
同値であることが示される.
2.1969年に提起されたGoldberg予想とは,コンパクト概Kaehler-Einstein-
Riemann多様体の概複素構造は可積分であろう,すなわち複素構造になって
いるだろうというものである.提起以来50年ほど経つ現在,スカラー曲率が非負
ならば予想は正しい(関川の定理)とされているが,現在まだ未解決である.
このGoldberg予想の問題を擬Riemann多様体では,6次元以上のコンパクト
擬Riemann多様体で反例を見つけることができた.現在は,4次元ニュートラル
多様体で反例が存在するかどうかが問題となっていることなどを解説したい.

Math-Fi seminar on 12 Oct.

2017.10.03 Tue up
  • Date: 12 Oct. (Thu.)
  • Place: W.W. 6th-floor, Colloquium Room
  • TIme: 16:30-18:00
  • Speaker: Roland Friedrich (Saarland University)
  • Title: Operads and Stochastic Calculus

Math-Fi seminar on 5 Oct.

2017.10.03 Tue up
  • Date: 5 Oct. (Thu.)
  • Place: W.W. 6th-floor, Colloquium Room.
  • Time: 16:30-18:00
  • Speaker: Dai Taguchi (Osaka university)
  • Title: Semi-implicit Euler-Maruyama approximation for non-colliding particle systems